forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathv0.19.0.txt
995 lines (675 loc) · 46 KB
/
v0.19.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
.. _whatsnew_0190:
v0.19.0 (August ??, 2016)
-------------------------
This is a major release from 0.18.1 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- :func:`merge_asof` for asof-style time-series joining, see :ref:`here <whatsnew_0190.enhancements.asof_merge>`
- ``.rolling()`` are now time-series aware, see :ref:`here <whatsnew_0190.enhancements.rolling_ts>`
- pandas development api, see :ref:`here <whatsnew_0190.dev_api>`
- :func:`read_csv` now supports parsing ``Categorical`` data, see :ref:`here <whatsnew_0190.enhancements.read_csv_categorical>`
.. contents:: What's new in v0.19.0
:local:
:backlinks: none
.. _whatsnew_0190.new_features:
New features
~~~~~~~~~~~~
.. _whatsnew_0190.dev_api:
pandas development API
^^^^^^^^^^^^^^^^^^^^^^
As part of making pandas APi more uniform and accessible in the future, we have created a standard
sub-package of pandas, ``pandas.api`` to hold public API's. We are starting by exposing type
introspection functions in ``pandas.api.types``. More sub-packages and officially sanctioned API's
will be published in future versions of pandas (:issue:`13147`, :issue:`13634`)
The following are now part of this API:
.. ipython:: python
import pprint
from pandas.api import types
funcs = [ f for f in dir(types) if not f.startswith('_') ]
pprint.pprint(funcs)
.. note::
Calling these functions from the internal module ``pandas.core.common`` will now show a ``DeprecationWarning`` (:issue:`13990`)
.. _whatsnew_0190.enhancements.asof_merge:
``merge_asof`` for asof-style time-series joining
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A long-time requested feature has been added through the :func:`merge_asof` function, to
support asof style joining of time-series. (:issue:`1870`, :issue:`13695`, :issue:`13709`, :issue:`13902`). Full documentation is
:ref:`here <merging.merge_asof>`
The :func:`merge_asof` performs an asof merge, which is similar to a left-join
except that we match on nearest key rather than equal keys.
.. ipython:: python
left = pd.DataFrame({'a': [1, 5, 10],
'left_val': ['a', 'b', 'c']})
right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
'right_val': [1, 2, 3, 6, 7]})
left
right
We typically want to match exactly when possible, and use the most
recent value otherwise.
.. ipython:: python
pd.merge_asof(left, right, on='a')
We can also match rows ONLY with prior data, and not an exact match.
.. ipython:: python
pd.merge_asof(left, right, on='a', allow_exact_matches=False)
In a typical time-series example, we have ``trades`` and ``quotes`` and we want to ``asof-join`` them.
This also illustrates using the ``by`` parameter to group data before merging.
.. ipython:: python
trades = pd.DataFrame({
'time': pd.to_datetime(['20160525 13:30:00.023',
'20160525 13:30:00.038',
'20160525 13:30:00.048',
'20160525 13:30:00.048',
'20160525 13:30:00.048']),
'ticker': ['MSFT', 'MSFT',
'GOOG', 'GOOG', 'AAPL'],
'price': [51.95, 51.95,
720.77, 720.92, 98.00],
'quantity': [75, 155,
100, 100, 100]},
columns=['time', 'ticker', 'price', 'quantity'])
quotes = pd.DataFrame({
'time': pd.to_datetime(['20160525 13:30:00.023',
'20160525 13:30:00.023',
'20160525 13:30:00.030',
'20160525 13:30:00.041',
'20160525 13:30:00.048',
'20160525 13:30:00.049',
'20160525 13:30:00.072',
'20160525 13:30:00.075']),
'ticker': ['GOOG', 'MSFT', 'MSFT',
'MSFT', 'GOOG', 'AAPL', 'GOOG',
'MSFT'],
'bid': [720.50, 51.95, 51.97, 51.99,
720.50, 97.99, 720.50, 52.01],
'ask': [720.93, 51.96, 51.98, 52.00,
720.93, 98.01, 720.88, 52.03]},
columns=['time', 'ticker', 'bid', 'ask'])
.. ipython:: python
trades
quotes
An asof merge joins on the ``on``, typically a datetimelike field, which is ordered, and
in this case we are using a grouper in the ``by`` field. This is like a left-outer join, except
that forward filling happens automatically taking the most recent non-NaN value.
.. ipython:: python
pd.merge_asof(trades, quotes,
on='time',
by='ticker')
This returns a merged DataFrame with the entries in the same order as the original left
passed DataFrame (``trades`` in this case), with the fields of the ``quotes`` merged.
.. _whatsnew_0190.enhancements.rolling_ts:
``.rolling()`` are now time-series aware
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``.rolling()`` objects are now time-series aware and can accept a time-series offset (or convertible) for the ``window`` argument (:issue:`13327`, :issue:`12995`)
See the full documentation :ref:`here <stats.moments.ts>`.
.. ipython:: python
dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
index=pd.date_range('20130101 09:00:00', periods=5, freq='s'))
dft
This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.
.. ipython:: python
dft.rolling(2).sum()
dft.rolling(2, min_periods=1).sum()
Specifying an offset allows a more intuitive specification of the rolling frequency.
.. ipython:: python
dft.rolling('2s').sum()
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.
.. ipython:: python
dft = DataFrame({'B': [0, 1, 2, np.nan, 4]},
index = pd.Index([pd.Timestamp('20130101 09:00:00'),
pd.Timestamp('20130101 09:00:02'),
pd.Timestamp('20130101 09:00:03'),
pd.Timestamp('20130101 09:00:05'),
pd.Timestamp('20130101 09:00:06')],
name='foo'))
dft
dft.rolling(2).sum()
Using the time-specification generates variable windows for this sparse data.
.. ipython:: python
dft.rolling('2s').sum()
Furthermore, we now allow an optional ``on`` parameter to specify a column (rather than the
default of the index) in a DataFrame.
.. ipython:: python
dft = dft.reset_index()
dft
dft.rolling('2s', on='foo').sum()
.. _whatsnew_0190.enhancements.read_csv_dupe_col_names_support:
``read_csv`` has improved support for duplicate column names
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. ipython:: python
:suppress:
from pandas.compat import StringIO
:ref:`Duplicate column names <io.dupe_names>` are now supported in :func:`read_csv` whether
they are in the file or passed in as the ``names`` parameter (:issue:`7160`, :issue:`9424`)
.. ipython :: python
data = '0,1,2\n3,4,5'
names = ['a', 'b', 'a']
Previous behaviour:
.. code-block:: ipython
In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:
a b a
0 2 1 2
1 5 4 5
The first 'a' column contains the same data as the second 'a' column, when it should have
contained the array ``[0, 3]``.
New behaviour:
.. ipython :: python
In [2]: pd.read_csv(StringIO(data), names=names)
.. _whatsnew_0190.enhancements.read_csv_categorical:
:func:`read_csv` supports parsing ``Categorical`` directly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :func:`read_csv` function now supports parsing a ``Categorical`` column when
specified as a dtype (:issue:`10153`). Depending on the structure of the data,
this can result in a faster parse time and lower memory usage compared to
converting to ``Categorical`` after parsing. See the io :ref:`docs here <io.categorical>`
.. ipython:: python
data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3'
pd.read_csv(StringIO(data))
pd.read_csv(StringIO(data)).dtypes
pd.read_csv(StringIO(data), dtype='category').dtypes
Individual columns can be parsed as a ``Categorical`` using a dict specification
.. ipython:: python
pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
.. note::
The resulting categories will always be parsed as strings (object dtype).
If the categories are numeric they can be converted using the
:func:`to_numeric` function, or as appropriate, another converter
such as :func:`to_datetime`.
.. ipython:: python
df = pd.read_csv(StringIO(data), dtype='category')
df.dtypes
df['col3']
df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)
df['col3']
.. _whatsnew_0190.enhancements.semi_month_offsets:
Semi-Month Offsets
^^^^^^^^^^^^^^^^^^
Pandas has gained new frequency offsets, ``SemiMonthEnd`` ('SM') and ``SemiMonthBegin`` ('SMS').
These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively.
(:issue:`1543`)
.. ipython:: python
from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin
SemiMonthEnd:
.. ipython:: python
Timestamp('2016-01-01') + SemiMonthEnd()
pd.date_range('2015-01-01', freq='SM', periods=4)
SemiMonthBegin:
.. ipython:: python
Timestamp('2016-01-01') + SemiMonthBegin()
pd.date_range('2015-01-01', freq='SMS', periods=4)
Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.
.. ipython:: python
pd.date_range('2015-01-01', freq='SMS-16', periods=4)
pd.date_range('2015-01-01', freq='SM-14', periods=4)
.. _whatsnew_0190.enhancements.index:
New Index methods
^^^^^^^^^^^^^^^^^
Following methods and options are added to ``Index`` to be more consistent with ``Series`` and ``DataFrame``.
``Index`` now supports the ``.where()`` function for same shape indexing (:issue:`13170`)
.. ipython:: python
idx = pd.Index(['a', 'b', 'c'])
idx.where([True, False, True])
``Index`` now supports ``.dropna`` to exclude missing values (:issue:`6194`)
.. ipython:: python
idx = pd.Index([1, 2, np.nan, 4])
idx.dropna()
For ``MultiIndex``, values are dropped if any level is missing by default. Specifying
``how='all'`` only drops values where all levels are missing.
.. ipython:: python
midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4],
[1, 2, np.nan, np.nan]])
midx
midx.dropna()
midx.dropna(how='all')
``Index`` now supports ``.str.extractall()`` which returns a ``DataFrame``, the see :ref:`docs here <text.extractall>` (:issue:`10008`, :issue:`13156`)
.. ipython:: python
idx = pd.Index(["a1a2", "b1", "c1"])
idx.str.extractall("[ab](?P<digit>\d)")
``Index.astype()`` now accepts an optional boolean argument ``copy``, which allows optional copying if the requirements on dtype are satisfied (:issue:`13209`)
.. _whatsnew_0190.gbq:
Google BigQuery Enhancements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- The :func:`pandas.io.gbq.read_gbq` method has gained the ``dialect`` argument to allow users to specify whether to use BigQuery's legacy SQL or BigQuery's standard SQL. See the :ref:`docs <io.bigquery_reader>` for more details (:issue:`13615`).
.. _whatsnew_0190.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- The ``.tz_localize()`` method of ``DatetimeIndex`` and ``Timestamp`` has gained the ``errors`` keyword, so you can potentially coerce nonexistent timestamps to ``NaT``. The default behaviour remains to raising a ``NonExistentTimeError`` (:issue:`13057`)
- ``pd.to_numeric()`` now accepts a ``downcast`` parameter, which will downcast the data if possible to smallest specified numerical dtype (:issue:`13352`)
.. ipython:: python
s = ['1', 2, 3]
pd.to_numeric(s, downcast='unsigned')
pd.to_numeric(s, downcast='integer')
- ``.to_hdf/read_hdf()`` now accept path objects (e.g. ``pathlib.Path``, ``py.path.local``) for the file path (:issue:`11773`)
- ``Timestamp`` can now accept positional and keyword parameters similar to :func:`datetime.datetime` (:issue:`10758`, :issue:`11630`)
.. ipython:: python
pd.Timestamp(2012, 1, 1)
pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30)
- The ``pd.read_csv()`` with ``engine='python'`` has gained support for the ``decimal`` option (:issue:`12933`)
- The ``pd.read_csv()`` with ``engine='python'`` has gained support for the ``na_filter`` option (:issue:`13321`)
- The ``pd.read_csv()`` with ``engine='python'`` has gained support for the ``memory_map`` option (:issue:`13381`)
- The ``pd.read_html()`` has gained support for the ``na_values``, ``converters``, ``keep_default_na`` options (:issue:`13461`)
- ``Categorical.astype()`` now accepts an optional boolean argument ``copy``, effective when dtype is categorical (:issue:`13209`)
- ``DataFrame`` has gained the ``.asof()`` method to return the last non-NaN values according to the selected subset (:issue:`13358`)
- Consistent with the Python API, ``pd.read_csv()`` will now interpret ``+inf`` as positive infinity (:issue:`13274`)
- The ``DataFrame`` constructor will now respect key ordering if a list of ``OrderedDict`` objects are passed in (:issue:`13304`)
- ``pd.read_html()`` has gained support for the ``decimal`` option (:issue:`12907`)
- A function :func:`union_categorical` has been added for combining categoricals, see :ref:`Unioning Categoricals<categorical.union>` (:issue:`13361`, :issue:`:13763`, issue:`13846`)
- ``Series`` has gained the properties ``.is_monotonic``, ``.is_monotonic_increasing``, ``.is_monotonic_decreasing``, similar to ``Index`` (:issue:`13336`)
- ``DataFrame.to_sql()`` now allows a single value as the SQL type for all columns (:issue:`11886`).
- ``Series.append`` now supports the ``ignore_index`` option (:issue:`13677`)
- ``.to_stata()`` and ``StataWriter`` can now write variable labels to Stata dta files using a dictionary to make column names to labels (:issue:`13535`, :issue:`13536`)
- ``.to_stata()`` and ``StataWriter`` will automatically convert ``datetime64[ns]`` columns to Stata format ``%tc``, rather than raising a ``ValueError`` (:issue:`12259`)
- ``read_stata()`` and ``StataReader`` raise with a more explicit error message when reading Stata files with repeated value labels when ``convert_categoricals=True`` (:issue:`13923`)
- ``DataFrame.style`` will now render sparsified MultiIndexes (:issue:`11655`)
- ``DataFrame.style`` will now show column level names (e.g. ``DataFrame.columns.names``) (:issue:`13775`)
- ``DataFrame`` has gained support to re-order the columns based on the values
in a row using ``df.sort_values(by='...', axis=1)`` (:issue:`10806`)
.. ipython:: python
df = pd.DataFrame({'A': [2, 7], 'B': [3, 5], 'C': [4, 8]},
index=['row1', 'row2'])
df.sort_values(by='row2', axis=1)
- Added documentation to :ref:`I/O<io.dtypes>` regarding the perils of reading in columns with mixed dtypes and how to handle it (:issue:`13746`)
- Raise ImportError for in the sql functions when sqlalchemy is not installed and a connection string is used (:issue:`11920`).
.. _whatsnew_0190.api:
API changes
~~~~~~~~~~~
- ``Panel.to_sparse`` will raise a ``NotImplementedError`` exception when called (:issue:`13778`)
- ``Index.reshape`` will raise a ``NotImplementedError`` exception when called (:issue:`12882`)
- Non-convertible dates in an excel date column will be returned without conversion and the column will be ``object`` dtype, rather than raising an exception (:issue:`10001`)
- ``eval``'s upcasting rules for ``float32`` types have been updated to be more consistent with NumPy's rules. New behavior will not upcast to ``float64`` if you multiply a pandas ``float32`` object by a scalar float64. (:issue:`12388`)
- An ``UnsupportedFunctionCall`` error is now raised if NumPy ufuncs like ``np.mean`` are called on groupby or resample objects (:issue:`12811`)
- Calls to ``.sample()`` will respect the random seed set via ``numpy.random.seed(n)`` (:issue:`13161`)
- ``Styler.apply`` is now more strict about the outputs your function must return. For ``axis=0`` or ``axis=1``, the output shape must be identical. For ``axis=None``, the output must be a DataFrame with identical columns and index labels. (:issue:`13222`)
- ``Float64Index.astype(int)`` will now raise ``ValueError`` if ``Float64Index`` contains ``NaN`` values (:issue:`13149`)
- ``TimedeltaIndex.astype(int)`` and ``DatetimeIndex.astype(int)`` will now return ``Int64Index`` instead of ``np.array`` (:issue:`13209`)
- ``.filter()`` enforces mutual exclusion of the keyword arguments. (:issue:`12399`)
- ``PeridIndex`` can now accept ``list`` and ``array`` which contains ``pd.NaT`` (:issue:`13430`)
- ``__setitem__`` will no longer apply a callable rhs as a function instead of storing it. Call ``where`` directly to get the previous behavior. (:issue:`13299`)
- Passing ``Period`` with multiple frequencies to normal ``Index`` now returns ``Index`` with ``object`` dtype (:issue:`13664`)
- ``PeriodIndex.fillna`` with ``Period`` has different freq now coerces to ``object`` dtype (:issue:`13664`)
- More informative exceptions are passed through the csv parser. The exception type would now be the original exception type instead of ``CParserError``. (:issue:`13652`)
- ``astype()`` will now accept a dict of column name to data types mapping as the ``dtype`` argument. (:issue:`12086`)
- The ``pd.read_json`` and ``DataFrame.to_json`` has gained support for reading and writing json lines with ``lines`` option see :ref:`Line delimited json <io.jsonl>` (:issue:`9180`)
- ``pd.Timedelta(None)`` is now accepted and will return ``NaT``, mirroring ``pd.Timestamp`` (:issue:`13687`)
- ``Timestamp``, ``Period``, ``DatetimeIndex``, ``PeriodIndex`` and ``.dt`` accessor have gained a ``.is_leap_year`` property to check whether the date belongs to a leap year. (:issue:`13727`)
- ``pd.read_hdf`` will now raise a ``ValueError`` instead of ``KeyError``, if a mode other than ``r``, ``r+`` and ``a`` is supplied. (:issue:`13623`)
- ``DataFrame.values`` will now return ``float64`` with a ``DataFrame`` of mixed ``int64`` and ``uint64`` dtypes, conforming to ``np.find_common_type`` (:issue:`10364`, :issue:`13917`)
.. _whatsnew_0190.api.tolist:
``Series.tolist()`` will now return Python types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Series.tolist()`` will now return Python types in the output, mimicking NumPy ``.tolist()`` behaviour (:issue:`10904`)
.. ipython:: python
s = pd.Series([1,2,3])
type(s.tolist()[0])
Previous Behavior:
.. code-block:: ipython
In [7]: type(s.tolist()[0])
Out[7]:
<class 'numpy.int64'>
New Behavior:
.. ipython:: python
type(s.tolist()[0])
.. _whatsnew_0190.api.promote:
``Series`` type promotion on assignment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A ``Series`` will now correctly promote its dtype for assignment with incompat values to the current dtype (:issue:`13234`)
.. ipython:: python
s = pd.Series()
Previous Behavior:
.. code-block:: ipython
In [2]: s["a"] = pd.Timestamp("2016-01-01")
In [3]: s["b"] = 3.0
TypeError: invalid type promotion
New Behavior:
.. ipython:: python
s["a"] = pd.Timestamp("2016-01-01")
s["b"] = 3.0
s
s.dtype
.. _whatsnew_0190.api.to_datetime_coerce:
``.to_datetime()`` when coercing
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A bug is fixed in ``.to_datetime()`` when passing integers or floats, and no ``unit`` and ``errors='coerce'`` (:issue:`13180`).
Previously if ``.to_datetime()`` encountered mixed integers/floats and strings, but no datetimes with ``errors='coerce'`` it would convert all to ``NaT``.
Previous Behavior:
.. code-block:: ipython
In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
This will now convert integers/floats with the default unit of ``ns``.
.. ipython:: python
pd.to_datetime([1, 'foo'], errors='coerce')
.. _whatsnew_0190.api.merging:
Merging changes
^^^^^^^^^^^^^^^
Merging will now preserve the dtype of the join keys (:issue:`8596`)
.. ipython:: python
df1 = pd.DataFrame({'key': [1], 'v1': [10]})
df1
df2 = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]})
df2
Previous Behavior:
.. code-block:: ipython
In [5]: pd.merge(df1, df2, how='outer')
Out[5]:
key v1
0 1.0 10.0
1 1.0 20.0
2 2.0 30.0
In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
key float64
v1 float64
dtype: object
New Behavior:
We are able to preserve the join keys
.. ipython:: python
pd.merge(df1, df2, how='outer')
pd.merge(df1, df2, how='outer').dtypes
Of course if you have missing values that are introduced, then the
resulting dtype will be upcast, which is unchanged from previous.
.. ipython:: python
pd.merge(df1, df2, how='outer', on='key')
pd.merge(df1, df2, how='outer', on='key').dtypes
.. _whatsnew_0190.api.describe:
``.describe()`` changes
^^^^^^^^^^^^^^^^^^^^^^^
Percentile identifiers in the index of a ``.describe()`` output will now be rounded to the least precision that keeps them distinct (:issue:`13104`)
.. ipython:: python
s = pd.Series([0, 1, 2, 3, 4])
df = pd.DataFrame([0, 1, 2, 3, 4])
Previous Behavior:
The percentiles were rounded to at most one decimal place, which could raise ``ValueError`` for a data frame if the percentiles were duplicated.
.. code-block:: ipython
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.0% 0.000400
0.1% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
100.0% 3.998000
100.0% 3.999600
max 4.000000
dtype: float64
In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:
...
ValueError: cannot reindex from a duplicate axis
New Behavior:
.. ipython:: python
s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Furthermore:
- Passing duplicated ``percentiles`` will now raise a ``ValueError``.
- Bug in ``.describe()`` on a DataFrame with a mixed-dtype column index, which would previously raise a ``TypeError`` (:issue:`13288`)
.. _whatsnew_0190.api.periodnat:
``Period('NaT')`` now returns ``pd.NaT``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, ``Period`` has its own ``Period('NaT')`` representation different from ``pd.NaT``. Now ``Period('NaT')`` has been changed to return ``pd.NaT``. (:issue:`12759`, :issue:`13582`)
Previous Behavior:
.. code-block:: ipython
In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')
New Behavior:
These result in ``pd.NaT`` without providing ``freq`` option.
.. ipython:: python
pd.Period('NaT')
pd.Period(None)
To be compat with ``Period`` addition and subtraction, ``pd.NaT`` now supports addition and subtraction with ``int``. Previously it raises ``ValueError``.
Previous Behavior:
.. code-block:: ipython
In [5]: pd.NaT + 1
...
ValueError: Cannot add integral value to Timestamp without freq.
New Behavior:
.. ipython:: python
pd.NaT + 1
pd.NaT - 1
.. _whatsnew_0190.api.difference:
``Index.difference`` and ``.symmetric_difference`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Index.difference`` and ``Index.symmetric_difference`` will now, more consistently, treat ``NaN`` values as any other values. (:issue:`13514`)
.. ipython:: python
idx1 = pd.Index([1, 2, 3, np.nan])
idx2 = pd.Index([0, 1, np.nan])
Previous Behavior:
.. code-block:: ipython
In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')
In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')
New Behavior:
.. ipython:: python
idx1.difference(idx2)
idx1.symmetric_difference(idx2)
.. _whatsnew_0190.api.autogenerated_chunksize_index:
``read_csv`` will progressively enumerate chunks
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When :func:`read_csv` is called with ``chunksize='n'`` and without specifying an index,
each chunk used to have an independently generated index from `0`` to ``n-1``.
They are now given instead a progressive index, starting from ``0`` for the first chunk,
from ``n`` for the second, and so on, so that, when concatenated, they are identical to
the result of calling :func:`read_csv` without the ``chunksize=`` argument.
(:issue:`12185`)
.. ipython :: python
data = 'A,B\n0,1\n2,3\n4,5\n6,7'
Previous behaviour:
.. code-block:: ipython
In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[2]:
A B
0 0 1
1 2 3
0 4 5
1 6 7
New behaviour:
.. ipython :: python
pd.concat(pd.read_csv(StringIO(data), chunksize=2))
.. _whatsnew_0190.sparse:
Sparse Changes
^^^^^^^^^^^^^^
These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.
- Sparse data structure now can preserve ``dtype`` after arithmetic ops (:issue:`13848`)
.. ipython:: python
s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64)
s.dtype
s + 1
- Sparse data structure now support ``astype`` to convert internal ``dtype`` (:issue:`13900`)
.. ipython:: python
s = pd.SparseSeries([1., 0., 2., 0.], fill_value=0)
s
s.astype(np.int64)
``astype`` fails if data contains values which cannot be converted to specified ``dtype``.
Note that the limitation is applied to ``fill_value`` which default is ``np.nan``.
.. code-block:: ipython
In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64)
Out[7]:
ValueError: unable to coerce current fill_value nan to int64 dtype
- Subclassed ``SparseDataFrame`` and ``SparseSeries`` now preserve class types when slicing or transposing. (:issue:`13787`)
- Bug in ``SparseSeries`` with ``MultiIndex`` ``[]`` indexing may raise ``IndexError`` (:issue:`13144`)
- Bug in ``SparseSeries`` with ``MultiIndex`` ``[]`` indexing result may have normal ``Index`` (:issue:`13144`)
- Bug in ``SparseDataFrame`` in which ``axis=None`` did not default to ``axis=0`` (:issue:`13048`)
- Bug in ``SparseSeries`` and ``SparseDataFrame`` creation with ``object`` dtype may raise ``TypeError`` (:issue:`11633`)
- Bug in ``SparseDataFrame`` doesn't respect passed ``SparseArray`` or ``SparseSeries`` 's dtype and ``fill_value`` (:issue:`13866`)
- Bug in ``SparseArray`` and ``SparseSeries`` don't apply ufunc to ``fill_value`` (:issue:`13853`)
- Bug in ``SparseSeries.abs`` incorrectly keeps negative ``fill_value`` (:issue:`13853`)
- Bug in single row slicing on multi-type ``SparseDataFrame``s, types were previously forced to float (:issue:`13917`)
- Bug in sparse indexing using ``SparseArray`` with ``bool`` dtype may return incorrect result (:issue:`13985`)
.. _whatsnew_0190.deprecations:
Deprecations
~~~~~~~~~~~~
- ``Categorical.reshape`` has been deprecated and will be removed in a subsequent release (:issue:`12882`)
- ``Series.reshape`` has been deprecated and will be removed in a subsequent release (:issue:`12882`)
- ``DataFrame.to_html()`` and ``DataFrame.to_latex()`` have dropped the ``colSpace`` parameter in favor of ``col_space`` (:issue:`13857`)
- ``DataFrame.to_sql()`` has deprecated the ``flavor`` parameter, as it is superfluous when SQLAlchemy is not installed (:issue:`13611`)
- ``compact_ints`` and ``use_unsigned`` have been deprecated in ``pd.read_csv()`` and will be removed in a future version (:issue:`13320`)
- ``buffer_lines`` has been deprecated in ``pd.read_csv()`` and will be removed in a future version (:issue:`13360`)
- ``as_recarray`` has been deprecated in ``pd.read_csv()`` and will be removed in a future version (:issue:`13373`)
- ``skip_footer`` has been deprecated in ``pd.read_csv()`` in favor of ``skipfooter`` and will be removed in a future version (:issue:`13349`)
- top-level ``pd.ordered_merge()`` has been renamed to ``pd.merge_ordered()`` and the original name will be removed in a future version (:issue:`13358`)
- ``Timestamp.offset`` property (and named arg in the constructor), has been deprecated in favor of ``freq`` (:issue:`12160`)
- ``pd.tseries.util.pivot_annual`` is deprecated. Use ``pivot_table`` as alternative, an example is :ref:`here <cookbook.pivot>` (:issue:`736`)
- ``pd.tseries.util.isleapyear`` has been deprecated and will be removed in a subsequent release. Datetime-likes now have a ``.is_leap_year`` property. (:issue:`13727`)
- ``Panel4D`` and ``PanelND`` constructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package <http://xarray.pydata.org/en/stable/>`__. Pandas provides a :meth:`~Panel4D.to_xarray` method to automate this conversion. (:issue:`13564`)
- ``pandas.tseries.frequencies.get_standard_freq`` is deprecated. Use ``pandas.tseries.frequencies.to_offset(freq).rule_code`` instead. (:issue:`13874`)
- ``pandas.tseries.frequencies.to_offset``'s ``freqstr`` keyword is deprecated in favor of ``freq``. (:issue:`13874`)
.. _whatsnew_0190.prior_deprecations:
Removal of prior version deprecations/changes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- The ``SparsePanel`` class has been removed (:issue:`13778`)
- The ``pd.sandbox`` module has been removed in favor of the external library ``pandas-qt`` (:issue:`13670`)
- The ``pandas.io.data`` and ``pandas.io.wb`` modules are removed in favor of
the `pandas-datareader package <https://github.com/pydata/pandas-datareader>`__ (:issue:`13724`).
- The ``pandas.tools.rplot`` module has been removed in favor of
the `seaborn package <https://github.com/mwaskom/seaborn>`__ (:issue:`13855`)
- ``DataFrame.to_csv()`` has dropped the ``engine`` parameter, as was deprecated in 0.17.1 (:issue:`11274`, :issue:`13419`)
- ``DataFrame.to_dict()`` has dropped the ``outtype`` parameter in favor of ``orient`` (:issue:`13627`, :issue:`8486`)
- ``pd.Categorical`` has dropped setting of the ``ordered`` attribute directly in favor of the ``set_ordered`` method (:issue:`13671`)
- ``pd.Categorical`` has dropped the ``levels`` attribute in favour of ``categories`` (:issue:`8376`)
- ``DataFrame.to_sql()`` has dropped the ``mysql`` option for the ``flavor`` parameter (:issue:`13611`)
- ``pd.Index`` has dropped the ``diff`` method in favour of ``difference`` (:issue:`13669`)
- ``Series.to_csv`` has dropped the ``nanRep`` parameter in favor of ``na_rep`` (:issue:`13804`)
- ``Series.xs``, ``DataFrame.xs``, ``Panel.xs``, ``Panel.major_xs``, and ``Panel.minor_xs`` have dropped the ``copy`` parameter (:issue:`13781`)
- ``str.split`` has dropped the ``return_type`` parameter in favor of ``expand`` (:issue:`13701`)
- Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (:issue:`13590`, :issue:`13868`)
Previous Behavior:
.. code-block:: ipython
In [2]: pd.date_range('2016-07-01', freq='W@MON', periods=3)
pandas/tseries/frequencies.py:465: FutureWarning: Freq "W@MON" is deprecated, use "W-MON" as alternative.
Out[2]: DatetimeIndex(['2016-07-04', '2016-07-11', '2016-07-18'], dtype='datetime64[ns]', freq='W-MON')
Now legacy time rules raises ``ValueError``. For the list of currently supported offsets, see :ref:`here <timeseries.offset_aliases>`
- The ``tquery`` and ``uquery`` functions in the ``pandas.io.sql`` module are removed (:issue:`5950`).
.. _whatsnew_0190.performance:
Performance Improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of sparse ``IntIndex.intersect`` (:issue:`13082`)
- Improved performance of sparse arithmetic with ``BlockIndex`` when the number of blocks are large, though recommended to use ``IntIndex`` in such cases (:issue:`13082`)
- increased performance of ``DataFrame.quantile()`` as it now operates per-block (:issue:`11623`)
- Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (:issue:`13166`, :issue:`13334`)
- Improved performance of ``DataFrameGroupBy.transform`` (:issue:`12737`)
- Improved performance of ``Index`` and ``Series`` ``.duplicated`` (:issue:`10235`)
- Improved performance of ``Index.difference`` (:issue:`12044`)
- Improved performance of ``RangeIndex.is_monotonic_increasing`` and ``is_monotonic_decreasing`` (:issue:`13749`)
- Improved performance of datetime string parsing in ``DatetimeIndex`` (:issue:`13692`)
- Improved performance of hashing ``Period`` (:issue:`12817`)
- Improved performance of ``factorize`` of datetime with timezone (:issue:`13750`)
.. _whatsnew_0190.bug_fixes:
Bug Fixes
~~~~~~~~~
- Bug in ``groupby().shift()``, which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (:issue:`13813`)
- Bug in ``groupby().cumsum()`` calculating ``cumprod`` when ``axis=1``. (:issue:`13994`)
- Bug in ``pd.read_csv()``, which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (:issue:`13703`)
- Bug in ``pd.read_csv()``, which caused BOM files to be incorrectly parsed by not ignoring the BOM (:issue:`4793`)
- Bug in ``pd.to_timedelta()`` in which the ``errors`` parameter was not being respected (:issue:`13613`)
- Bug in ``io.json.json_normalize()``, where non-ascii keys raised an exception (:issue:`13213`)
- Bug when passing a not-default-indexed ``Series`` as ``xerr`` or ``yerr`` in ``.plot()`` (:issue:`11858`)
- Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (issue:`9161`, :issue:`13544`)
- Bug in matplotlib ``AutoDataFormatter``; this restores the second scaled formatting and re-adds micro-second scaled formatting (:issue:`13131`)
- Bug in selection from a ``HDFStore`` with a fixed format and ``start`` and/or ``stop`` specified will now return the selected range (:issue:`8287`)
- Bug in ``Series`` construction from a tuple of integers on windows not returning default dtype (int64) (:issue:`13646`)
- Bug in ``.groupby(..).resample(..)`` when the same object is called multiple times (:issue:`13174`)
- Bug in ``.to_records()`` when index name is a unicode string (:issue:`13172`)
- Bug in calling ``.memory_usage()`` on object which doesn't implement (:issue:`12924`)
- Regression in ``Series.quantile`` with nans (also shows up in ``.median()`` and ``.describe()`` ); furthermore now names the ``Series`` with the quantile (:issue:`13098`, :issue:`13146`)
- Bug in ``SeriesGroupBy.transform`` with datetime values and missing groups (:issue:`13191`)
- Bug in ``Series.str.extractall()`` with ``str`` index raises ``ValueError`` (:issue:`13156`)
- Bug in ``Series.str.extractall()`` with single group and quantifier (:issue:`13382`)
- Bug in ``DatetimeIndex`` and ``Period`` subtraction raises ``ValueError`` or ``AttributeError`` rather than ``TypeError`` (:issue:`13078`)
- Bug in ``Index`` and ``Series`` created with ``NaN`` and ``NaT`` mixed data may not have ``datetime64`` dtype (:issue:`13324`)
- Bug in ``Index`` and ``Series`` may ignore ``np.datetime64('nat')`` and ``np.timdelta64('nat')`` to infer dtype (:issue:`13324`)
- Bug in ``PeriodIndex`` and ``Period`` subtraction raises ``AttributeError`` (:issue:`13071`)
- Bug in ``PeriodIndex`` construction returning a ``float64`` index in some circumstances (:issue:`13067`)
- Bug in ``.resample(..)`` with a ``PeriodIndex`` not changing its ``freq`` appropriately when empty (:issue:`13067`)
- Bug in ``.resample(..)`` with a ``PeriodIndex`` not retaining its type or name with an empty ``DataFrame`` appropriately when empty (:issue:`13212`)
- Bug in ``groupby(..).apply(..)`` when the passed function returns scalar values per group (:issue:`13468`).
- Bug in ``groupby(..).resample(..)`` where passing some keywords would raise an exception (:issue:`13235`)
- Bug in ``.tz_convert`` on a tz-aware ``DateTimeIndex`` that relied on index being sorted for correct results (:issue:`13306`)
- Bug in ``.tz_localize`` with ``dateutil.tz.tzlocal`` may return incorrect result (:issue:`13583`)
- Bug in ``DatetimeTZDtype`` dtype with ``dateutil.tz.tzlocal`` cannot be regarded as valid dtype (:issue:`13583`)
- Bug in ``pd.read_hdf()`` where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (:issue:`13231`)
- Bug in ``.rolling()`` that allowed a negative integer window in contruction of the ``Rolling()`` object, but would later fail on aggregation (:issue:`13383`)
- Bug in printing ``pd.DataFrame`` where unusual elements with the ``object`` dtype were causing segfaults (:issue:`13717`)
- Bug in ranking ``Series`` which could result in segfaults (:issue:`13445`)
- Bug in various index types, which did not propagate the name of passed index (:issue:`12309`)
- Bug in ``DatetimeIndex``, which did not honour the ``copy=True`` (:issue:`13205`)
- Bug in ``DatetimeIndex.is_normalized`` returns incorrectly for normalized date_range in case of local timezones (:issue:`13459`)
- Bug in ``DataFrame.to_csv()`` in which float values were being quoted even though quotations were specified for non-numeric values only (:issue:`12922`, :issue:`13259`)
- Bug in ``DataFrame.describe()`` raising ``ValueError`` with only boolean columns (:issue:`13898`)
- Bug in ``MultiIndex`` slicing where extra elements were returned when level is non-unique (:issue:`12896`)
- Bug in ``.str.replace`` does not raise ``TypeError`` for invalid replacement (:issue:`13438`)
- Bug in ``MultiIndex.from_arrays`` which didn't check for input array lengths matching (:issue:`13599`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which ``NaN`` values weren't being detected after data was converted to numeric values (:issue:`13314`)
- Bug in ``pd.read_csv()`` in which the ``nrows`` argument was not properly validated for both engines (:issue:`10476`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which infinities of mixed-case forms were not being interpreted properly (:issue:`13274`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which trailing ``NaN`` values were not being parsed (:issue:`13320`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` when reading from a ``tempfile.TemporaryFile`` on Windows with Python 3 (:issue:`13398`)
- Bug in ``pd.read_csv()`` that prevents ``usecols`` kwarg from accepting single-byte unicode strings (:issue:`13219`)
- Bug in ``pd.read_csv()`` that prevents ``usecols`` from being an empty set (:issue:`13402`)
- Bug in ``pd.read_csv()`` with ``engine='c'`` in which null ``quotechar`` was not accepted even though ``quoting`` was specified as ``None`` (:issue:`13411`)
- Bug in ``pd.read_csv()`` with ``engine='c'`` in which fields were not properly cast to float when quoting was specified as non-numeric (:issue:`13411`)
- Bug in ``pd.read_csv``, ``pd.read_table``, ``pd.read_fwf``, ``pd.read_stata`` and ``pd.read_sas`` where files were opened by parsers but not closed if both ``chunksize`` and ``iterator`` were ``None``. (:issue:`13940`)
- Bug in ``StataReader``, ``StataWriter``, ``XportReader`` and ``SAS7BDATReader`` where a file was not properly closed when an error was raised. (:issue:`13940`)
- Bug in ``pd.pivot_table()`` where ``margins_name`` is ignored when ``aggfunc`` is a list (:issue:`13354`)
- Bug in ``pd.Series.str.zfill``, ``center``, ``ljust``, ``rjust``, and ``pad`` when passing non-integers, did not raise ``TypeError`` (:issue:`13598`)
- Bug in checking for any null objects in a ``TimedeltaIndex``, which always returned ``True`` (:issue:`13603`)
- Bug in ``Series`` arithmetic raises ``TypeError`` if it contains datetime-like as ``object`` dtype (:issue:`13043`)
- Bug ``Series.isnull`` and ``Series.notnull`` ignore ``Period('NaT')`` (:issue:`13737`)
- Bug ``Series.fillna`` and ``Series.dropna`` don't affect to ``Period('NaT')`` (:issue:`13737`)
- Bug in ``pd.to_datetime()`` when passing invalid datatypes (e.g. bool); will now respect the ``errors`` keyword (:issue:`13176`)
- Bug in ``pd.to_datetime()`` which overflowed on ``int8``, and ``int16`` dtypes (:issue:`13451`)
- Bug in extension dtype creation where the created types were not is/identical (:issue:`13285`)
- Bug in ``.resample(..)`` where incorrect warnings were triggered by IPython introspection (:issue:`13618`)
- Bug in ``NaT`` - ``Period`` raises ``AttributeError`` (:issue:`13071`)
- Bug in ``Series`` comparison may output incorrect result if rhs contains ``NaT`` (:issue:`9005`)
- Bug in ``Series`` and ``Index`` comparison may output incorrect result if it contains ``NaT`` with ``object`` dtype (:issue:`13592`)
- Bug in ``Period`` addition raises ``TypeError`` if ``Period`` is on right hand side (:issue:`13069`)
- Bug in ``Peirod`` and ``Series`` or ``Index`` comparison raises ``TypeError`` (:issue:`13200`)
- Bug in ``pd.set_eng_float_format()`` that would prevent NaN's from formatting (:issue:`11981`)
- Bug in ``.unstack`` with ``Categorical`` dtype resets ``.ordered`` to ``True`` (:issue:`13249`)
- Clean some compile time warnings in datetime parsing (:issue:`13607`)
- Bug in ``factorize`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13750`)
- Bug in ``.set_index`` raises ``AmbiguousTimeError`` if new index contains DST boundary and multi levels (:issue:`12920`)
- Bug in ``.shift`` raises ``AmbiguousTimeError`` if data contains datetime near DST boundary (:issue:`13926`)
- Bug in ``pd.read_hdf()`` returns incorrect result when a ``DataFrame`` with a ``categorical`` column and a query which doesn't match any values (:issue:`13792`)
- Bug in ``pd.to_datetime()`` raise ``AttributeError`` with NaN and the other string is not valid when errors='ignore' (:issue:`12424`)
- Bug in ``Series`` comparison operators when dealing with zero dim NumPy arrays (:issue:`13006`)
- Bug in ``.combine_first`` may return incorrect ``dtype`` (:issue:`7630`, :issue:`10567`)
- Bug in ``groupby`` where ``apply`` returns different result depending on whether first result is ``None`` or not (:issue:`12824`)
- Bug in ``groupby(..).nth()`` where the group key is included inconsistently if called after ``.head()/.tail()`` (:issue:`12839`)
- Bug in ``.to_html``, ``.to_latex`` and ``.to_string`` silently ignore custom datetime formatter passed through the ``formatters`` key word (:issue:`10690`)
- Bug in ``pd.to_numeric`` when ``errors='coerce'`` and input contains non-hashable objects (:issue:`13324`)
- Bug in invalid ``Timedelta`` arithmetic and comparison may raise ``ValueError`` rather than ``TypeError`` (:issue:`13624`)
- Bug in invalid datetime parsing in ``to_datetime`` and ``DatetimeIndex`` may raise ``TypeError`` rather than ``ValueError`` (:issue:`11169`, :issue:`11287`)
- Bug in ``Index`` created with tz-aware ``Timestamp`` and mismatched ``tz`` option incorrectly coerces timezone (:issue:`13692`)
- Bug in ``DatetimeIndex`` with nanosecond frequency does not include timestamp specified with ``end`` (:issue:`13672`)
- Bug in ``Index`` raises ``OutOfBoundsDatetime`` if ``datetime`` exceeds ``datetime64[ns]`` bounds, rather than coercing to ``object`` dtype (:issue:`13663`)
- Bug in ``Index`` may ignore specified ``datetime64`` or ``timedelta64`` passed as ``dtype`` (:issue:`13981`)
- Bug in ``RangeIndex`` can be created without no arguments rather than raises ``TypeError`` (:issue:`13793`)
- Bug in ``.value_counts`` raises ``OutOfBoundsDatetime`` if data exceeds ``datetime64[ns]`` bounds (:issue:`13663`)
- Bug in ``DatetimeIndex`` may raise ``OutOfBoundsDatetime`` if input ``np.datetime64`` has other unit than ``ns`` (:issue:`9114`)
- Bug in ``Series`` creation with ``np.datetime64`` which has other unit than ``ns`` as ``object`` dtype results in incorrect values (:issue:`13876`)
- Bug in ``isnull`` ``notnull`` raise ``TypeError`` if input datetime-like has other unit than ``ns`` (:issue:`13389`)
- Bug in ``.merge`` may raise ``TypeError`` if input datetime-like has other unit than ``ns`` (:issue:`13389`)
- Bug in ``HDFStore``/``read_hdf()`` discarded ``DatetimeIndex.name`` if ``tz`` was set (:issue:`13884`)
- Bug in ``Categorical.remove_unused_categories()`` changes ``.codes`` dtype to platform int (:issue:`13261`)
- Bug in ``groupby`` with ``as_index=False`` returns all NaN's when grouping on multiple columns including a categorical one (:issue:`13204`)
- Bug in ``df.groupby(...)[...]`` where getitem with ``Int64Index`` raised an error (:issue:`13731`)
- Bug in the CSS classes assigned to ``DataFrame.style`` for index names. Previously they were assigned ``"col_heading level<n> col<c>"`` where ``n`` was the number of levels + 1. Now they are assigned ``"index_name level<n>"``, where ``n`` is the correct level for that MultiIndex.
- Bug where ``pd.read_gbq()`` could throw ``ImportError: No module named discovery`` as a result of a naming conflict with another python package called apiclient (:issue:`13454`)
- Bug in ``Index.union`` returns an incorrect result with a named empty index (:issue:`13432`)
- Bugs in ``Index.difference`` and ``DataFrame.join`` raise in Python3 when using mixed-integer indexes (:issue:`13432`, :issue:`12814`)
- Bug in ``.to_excel()`` when DataFrame contains a MultiIndex which contains a label with a NaN value (:issue:`13511`)
- Bug in invalid frequency offset string like "D1", "-2-3H" may not raise ``ValueError (:issue:`13930`)
- Bug in ``concat`` and ``groupby`` for hierarchical frames with ``RangeIndex`` levels (:issue:`13542`).
- Bug in ``agg()`` function on groupby dataframe changes dtype of ``datetime64[ns]`` column to ``float64`` (:issue:`12821`)
- Bug in operations on ``NaT`` returning ``float`` instead of ``datetime64[ns]`` (:issue:`12941`)
- Bug in ``pd.read_csv`` in Python 2.x with non-UTF8 encoded, multi-character separated data (:issue:`3404`)
- Bug in ``Index`` raises ``KeyError`` displaying incorrect column when column is not in the df and columns contains duplicate values (:issue:`13822`)
- Bug in ``Period`` and ``PeriodIndex`` creating wrong dates when frequency has combined offset aliases (:issue:`13874`)
- Bug in ``pd.to_datetime()`` did not cast floats correctly when ``unit`` was specified, resulting in truncated datetime (:issue:`13845`)
- Bug in ``.to_string()`` when called with an integer ``line_width`` and ``index=False`` raises an UnboundLocalError exception because ``idx`` referenced before assignment.