|
| 1 | +/*******************************************************************\ |
| 2 | +
|
| 3 | +Module: Unit test for graph.h |
| 4 | +
|
| 5 | +Author: Diffblue Ltd |
| 6 | +
|
| 7 | +\*******************************************************************/ |
| 8 | + |
| 9 | +#include <testing-utils/catch.hpp> |
| 10 | + |
| 11 | +#include <util/graph.h> |
| 12 | + |
| 13 | +static inline bool operator==(const empty_edget &, const empty_edget &) |
| 14 | +{ |
| 15 | + return true; |
| 16 | +} |
| 17 | + |
| 18 | +template<class E> |
| 19 | +static inline bool operator==( |
| 20 | + const graph_nodet<E> &gn1, const graph_nodet<E> &gn2) |
| 21 | +{ |
| 22 | + return gn1.in == gn2.in && gn1.out == gn2.out; |
| 23 | +} |
| 24 | + |
| 25 | +template<class N> |
| 26 | +static inline bool operator==(const grapht<N> &g1, const grapht<N> &g2) |
| 27 | +{ |
| 28 | + if(g1.size() != g2.size()) |
| 29 | + return false; |
| 30 | + |
| 31 | + for(typename grapht<N>::node_indext i = 0; i < g1.size(); ++i) |
| 32 | + { |
| 33 | + if(!(g1[i] == g2[i])) |
| 34 | + return false; |
| 35 | + } |
| 36 | + |
| 37 | + return true; |
| 38 | +} |
| 39 | + |
| 40 | +/// To verify make_chordal is working as intended: naively search for a |
| 41 | +/// hole (a chordless 4+-cycle) |
| 42 | +template<class N> |
| 43 | +static bool contains_hole( |
| 44 | + const grapht<N> &g, |
| 45 | + const std::vector<typename grapht<N>::node_indext> &cycle_so_far) |
| 46 | +{ |
| 47 | + const auto &successors_map = g[cycle_so_far.back()].out; |
| 48 | + |
| 49 | + // If this node has a triangular edge (one leading to cycle_so_far[-3]) then |
| 50 | + // this isn't a hole: |
| 51 | + if(cycle_so_far.size() >= 3 && |
| 52 | + successors_map.count(cycle_so_far[cycle_so_far.size() - 3]) != 0) |
| 53 | + { |
| 54 | + return false; |
| 55 | + } |
| 56 | + |
| 57 | + // If this node has an edge leading to any other cycle member (except our |
| 58 | + // immediate predecessor) then we've found a hole: |
| 59 | + if(cycle_so_far.size() >= 4) |
| 60 | + { |
| 61 | + for(std::size_t i = 0; i <= cycle_so_far.size() - 4; ++i) |
| 62 | + { |
| 63 | + if(successors_map.count(cycle_so_far[i]) != 0) |
| 64 | + return true; |
| 65 | + } |
| 66 | + } |
| 67 | + |
| 68 | + // Otherwise try to extend the cycle: |
| 69 | + for(const auto &successor : successors_map) |
| 70 | + { |
| 71 | + // The input is undirected, so a 2-cycle is always present: |
| 72 | + if(cycle_so_far.size() >= 2 && |
| 73 | + successor.first == cycle_so_far[cycle_so_far.size() - 2]) |
| 74 | + { |
| 75 | + continue; |
| 76 | + } |
| 77 | + |
| 78 | + std::vector<typename grapht<N>::node_indext> extended_cycle = cycle_so_far; |
| 79 | + extended_cycle.push_back(successor.first); |
| 80 | + if(contains_hole(g, extended_cycle)) |
| 81 | + return true; |
| 82 | + } |
| 83 | + |
| 84 | + return false; |
| 85 | +} |
| 86 | + |
| 87 | +template<class N> |
| 88 | +static bool contains_hole(const grapht<N> &g) |
| 89 | +{ |
| 90 | + // For each node in the graph, check for cycles starting at that node. |
| 91 | + // This is pretty dumb, but I figure this formulation is simple enough to |
| 92 | + // check by hand and the complexity isn't too bad for small examples. |
| 93 | + |
| 94 | + for(typename grapht<N>::node_indext i = 0; i < g.size(); ++i) |
| 95 | + { |
| 96 | + std::vector<typename grapht<N>::node_indext> start_node {i}; |
| 97 | + if(contains_hole(g, start_node)) |
| 98 | + return true; |
| 99 | + } |
| 100 | + |
| 101 | + return false; |
| 102 | +} |
| 103 | + |
| 104 | +typedef grapht<graph_nodet<empty_edget>> simple_grapht; |
| 105 | + |
| 106 | +SCENARIO("graph-make-chordal", |
| 107 | + "[core][util][graph]") |
| 108 | +{ |
| 109 | + GIVEN("An acyclic graph") |
| 110 | + { |
| 111 | + simple_grapht graph; |
| 112 | + simple_grapht::node_indext indices[5]; |
| 113 | + |
| 114 | + for(int i = 0; i < 5; ++i) |
| 115 | + indices[i] = graph.add_node(); |
| 116 | + |
| 117 | + // Make a graph: 0 <-> 1 <-> 4 |
| 118 | + // \-> 2 <-/ |
| 119 | + // \-> 3 |
| 120 | + graph.add_undirected_edge(indices[0], indices[1]); |
| 121 | + graph.add_undirected_edge(indices[0], indices[2]); |
| 122 | + graph.add_undirected_edge(indices[0], indices[3]); |
| 123 | + graph.add_undirected_edge(indices[1], indices[4]); |
| 124 | + graph.add_undirected_edge(indices[2], indices[4]); |
| 125 | + |
| 126 | + WHEN("The graph is made chordal") |
| 127 | + { |
| 128 | + simple_grapht chordal_graph = graph; |
| 129 | + chordal_graph.make_chordal(); |
| 130 | + |
| 131 | + THEN("The graph should be unchanged") |
| 132 | + { |
| 133 | + // This doesn't pass, as make_chordal actually adds triangular edges to |
| 134 | + // *all* common neighbours, even nodes that aren't part of a cycle. |
| 135 | + // REQUIRE(graph == chordal_graph); |
| 136 | + |
| 137 | + // At least it shouldn't be chordal! |
| 138 | + REQUIRE(!contains_hole(chordal_graph)); |
| 139 | + } |
| 140 | + } |
| 141 | + } |
| 142 | + |
| 143 | + GIVEN("A cyclic graph that is already chordal") |
| 144 | + { |
| 145 | + simple_grapht graph; |
| 146 | + simple_grapht::node_indext indices[5]; |
| 147 | + |
| 148 | + for(int i = 0; i < 5; ++i) |
| 149 | + indices[i] = graph.add_node(); |
| 150 | + |
| 151 | + // Make a graph: 0 <-> 1 <-> 2 <-> 0 |
| 152 | + // 3 <-> 1 <-> 2 <-> 3 |
| 153 | + // 4 <-> 1 <-> 2 <-> 4 |
| 154 | + graph.add_undirected_edge(indices[0], indices[1]); |
| 155 | + graph.add_undirected_edge(indices[1], indices[2]); |
| 156 | + graph.add_undirected_edge(indices[2], indices[0]); |
| 157 | + graph.add_undirected_edge(indices[3], indices[1]); |
| 158 | + graph.add_undirected_edge(indices[2], indices[3]); |
| 159 | + graph.add_undirected_edge(indices[4], indices[1]); |
| 160 | + graph.add_undirected_edge(indices[2], indices[4]); |
| 161 | + |
| 162 | + WHEN("The graph is made chordal") |
| 163 | + { |
| 164 | + simple_grapht chordal_graph = graph; |
| 165 | + chordal_graph.make_chordal(); |
| 166 | + |
| 167 | + THEN("The graph should be unchanged") |
| 168 | + { |
| 169 | + // This doesn't pass, as make_chordal actually adds triangular edges to |
| 170 | + // *all* common neighbours, even cycles that are already chordal. |
| 171 | + // REQUIRE(graph == chordal_graph); |
| 172 | + |
| 173 | + // At least it shouldn't be chordal! |
| 174 | + REQUIRE(!contains_hole(chordal_graph)); |
| 175 | + } |
| 176 | + } |
| 177 | + } |
| 178 | + |
| 179 | + GIVEN("A simple 4-cycle") |
| 180 | + { |
| 181 | + simple_grapht graph; |
| 182 | + simple_grapht::node_indext indices[4]; |
| 183 | + |
| 184 | + for(int i = 0; i < 4; ++i) |
| 185 | + indices[i] = graph.add_node(); |
| 186 | + |
| 187 | + graph.add_undirected_edge(indices[0], indices[1]); |
| 188 | + graph.add_undirected_edge(indices[1], indices[2]); |
| 189 | + graph.add_undirected_edge(indices[2], indices[3]); |
| 190 | + graph.add_undirected_edge(indices[3], indices[0]); |
| 191 | + |
| 192 | + // Check the contains_hole predicate is working as intended: |
| 193 | + REQUIRE(contains_hole(graph)); |
| 194 | + |
| 195 | + WHEN("The graph is made chordal") |
| 196 | + { |
| 197 | + simple_grapht chordal_graph = graph; |
| 198 | + chordal_graph.make_chordal(); |
| 199 | + |
| 200 | + THEN("The graph should gain a chord") |
| 201 | + { |
| 202 | + REQUIRE(!contains_hole(chordal_graph)); |
| 203 | + } |
| 204 | + } |
| 205 | + } |
| 206 | + |
| 207 | + GIVEN("A more complicated graph with a hole") |
| 208 | + { |
| 209 | + simple_grapht graph; |
| 210 | + simple_grapht::node_indext indices[8]; |
| 211 | + |
| 212 | + for(int i = 0; i < 8; ++i) |
| 213 | + indices[i] = graph.add_node(); |
| 214 | + |
| 215 | + // A 5-cycle: |
| 216 | + graph.add_undirected_edge(indices[0], indices[1]); |
| 217 | + graph.add_undirected_edge(indices[1], indices[2]); |
| 218 | + graph.add_undirected_edge(indices[2], indices[3]); |
| 219 | + graph.add_undirected_edge(indices[3], indices[4]); |
| 220 | + graph.add_undirected_edge(indices[4], indices[0]); |
| 221 | + |
| 222 | + // A 3-cycle connected to the 5: |
| 223 | + graph.add_undirected_edge(indices[4], indices[5]); |
| 224 | + graph.add_undirected_edge(indices[5], indices[6]); |
| 225 | + graph.add_undirected_edge(indices[6], indices[4]); |
| 226 | + |
| 227 | + // Another 3-cycle joined onto the 5: |
| 228 | + graph.add_undirected_edge(indices[1], indices[7]); |
| 229 | + graph.add_undirected_edge(indices[3], indices[7]); |
| 230 | + |
| 231 | + // Check we've made the input correctly: |
| 232 | + REQUIRE(contains_hole(graph)); |
| 233 | + |
| 234 | + WHEN("The graph is made chordal") |
| 235 | + { |
| 236 | + simple_grapht chordal_graph = graph; |
| 237 | + chordal_graph.make_chordal(); |
| 238 | + |
| 239 | + THEN("The graph's 5-cycle should be completed with chords") |
| 240 | + { |
| 241 | + REQUIRE(!contains_hole(chordal_graph)); |
| 242 | + } |
| 243 | + } |
| 244 | + } |
| 245 | +} |
| 246 | + |
| 247 | +SCENARIO("graph-connected-subgraphs", |
| 248 | + "[core][util][graph]") |
| 249 | +{ |
| 250 | + GIVEN("A connected graph") |
| 251 | + { |
| 252 | + simple_grapht graph; |
| 253 | + simple_grapht::node_indext indices[5]; |
| 254 | + |
| 255 | + for(int i = 0; i < 5; ++i) |
| 256 | + indices[i] = graph.add_node(); |
| 257 | + |
| 258 | + // Make a graph: 0 <-> 1 <-> 4 |
| 259 | + // \-> 2 <-/ |
| 260 | + // \-> 3 |
| 261 | + graph.add_undirected_edge(indices[0], indices[1]); |
| 262 | + graph.add_undirected_edge(indices[0], indices[2]); |
| 263 | + graph.add_undirected_edge(indices[0], indices[3]); |
| 264 | + graph.add_undirected_edge(indices[1], indices[4]); |
| 265 | + graph.add_undirected_edge(indices[2], indices[4]); |
| 266 | + |
| 267 | + WHEN("We take its connected subgraphs") |
| 268 | + { |
| 269 | + std::vector<simple_grapht::node_indext> subgraphs; |
| 270 | + graph.connected_subgraphs(subgraphs); |
| 271 | + |
| 272 | + REQUIRE(subgraphs.size() == graph.size()); |
| 273 | + simple_grapht::node_indext only_subgraph = subgraphs.at(0); |
| 274 | + |
| 275 | + // Check everything is in one subgraph: |
| 276 | + REQUIRE( |
| 277 | + subgraphs == |
| 278 | + std::vector<simple_grapht::node_indext>(graph.size(), only_subgraph)); |
| 279 | + } |
| 280 | + } |
| 281 | + |
| 282 | + GIVEN("A graph with three unconnected subgraphs") |
| 283 | + { |
| 284 | + simple_grapht graph; |
| 285 | + simple_grapht::node_indext indices[6]; |
| 286 | + |
| 287 | + for(int i = 0; i < 6; ++i) |
| 288 | + indices[i] = graph.add_node(); |
| 289 | + |
| 290 | + graph.add_undirected_edge(indices[0], indices[1]); |
| 291 | + graph.add_undirected_edge(indices[2], indices[3]); |
| 292 | + graph.add_undirected_edge(indices[4], indices[5]); |
| 293 | + |
| 294 | + WHEN("We take its connected subgraphs") |
| 295 | + { |
| 296 | + std::vector<simple_grapht::node_indext> subgraphs; |
| 297 | + graph.connected_subgraphs(subgraphs); |
| 298 | + |
| 299 | + REQUIRE(subgraphs.size() == graph.size()); |
| 300 | + simple_grapht::node_indext first_subgraph = subgraphs.at(0); |
| 301 | + simple_grapht::node_indext second_subgraph = subgraphs.at(2); |
| 302 | + simple_grapht::node_indext third_subgraph = subgraphs.at(4); |
| 303 | + |
| 304 | + std::vector<simple_grapht::node_indext> expected_subgraphs |
| 305 | + { |
| 306 | + first_subgraph, |
| 307 | + first_subgraph, |
| 308 | + second_subgraph, |
| 309 | + second_subgraph, |
| 310 | + third_subgraph, |
| 311 | + third_subgraph |
| 312 | + }; |
| 313 | + |
| 314 | + REQUIRE(subgraphs == expected_subgraphs); |
| 315 | + } |
| 316 | + } |
| 317 | +} |
0 commit comments