@@ -211,7 +211,7 @@ void string_refinementt::set_char_array_equality(
211
211
212
212
// / remove functions applications and create the necessary axioms
213
213
// / \par parameters: an expression containing function applications
214
- // / \return an epression containing no function application
214
+ // / \return an expression containing no function application
215
215
exprt string_refinementt::substitute_function_applications (exprt expr)
216
216
{
217
217
for (size_t i=0 ; i<expr.operands ().size (); ++i)
@@ -795,7 +795,7 @@ exprt string_refinementt::get_array(const exprt &arr) const
795
795
}
796
796
797
797
// / convert the content of a string to a more readable representation. This
798
- // / should only be used for debbuging .
798
+ // / should only be used for debugging .
799
799
// / \par parameters: a constant array expression and a integer expression
800
800
// / \return a string
801
801
std::string string_refinementt::string_of_array (const array_exprt &arr)
@@ -1022,7 +1022,7 @@ void string_refinementt::substitute_array_access(exprt &expr) const
1022
1022
}
1023
1023
1024
1024
// / Negates the constraint to be fed to a solver. The intended usage is to find
1025
- // / an assignement of the universal variable that would violate the axiom. To
1025
+ // / an assignment of the universal variable that would violate the axiom. To
1026
1026
// / avoid false positives, the symbols other than the universal variable should
1027
1027
// / have been replaced by their valuation in the current model.
1028
1028
// / \pre Symbols other than the universal variable should have been replaced by
@@ -1080,7 +1080,7 @@ static exprt negation_of_not_contains_constraint(
1080
1080
}
1081
1081
1082
1082
// / Negates the constraint to be fed to a solver. The intended usage is to find
1083
- // / an assignement of the universal variable that would violate the axiom. To
1083
+ // / an assignment of the universal variable that would violate the axiom. To
1084
1084
// / avoid false positives, the symbols other than the universal variable should
1085
1085
// / have been replaced by their valuation in the current model.
1086
1086
// / \pre Symbols other than the universal variable should have been replaced by
@@ -1238,7 +1238,7 @@ bool string_refinementt::check_axioms()
1238
1238
}
1239
1239
}
1240
1240
1241
- // / \par parameters: an expression with only addition and substraction
1241
+ // / \par parameters: an expression with only addition and subtraction
1242
1242
// / \return a map where each leaf of the input is mapped to the number of times
1243
1243
// / it is added. For instance, expression $x + x - y$ would give the map x ->
1244
1244
// / 2, y -> -1.
@@ -1355,7 +1355,7 @@ exprt string_refinementt::sum_over_map(
1355
1355
}
1356
1356
1357
1357
// / \par parameters: an expression with only plus and minus expr
1358
- // / \return an equivalent expression in a cannonical form
1358
+ // / \return an equivalent expression in a canonical form
1359
1359
exprt string_refinementt::simplify_sum (const exprt &f) const
1360
1360
{
1361
1361
std::map<exprt, int > map=map_representation_of_sum (f);
@@ -1375,7 +1375,7 @@ exprt string_refinementt::compute_inverse_function(
1375
1375
exprt positive, negative;
1376
1376
// number of time the element should be added (can be negative)
1377
1377
// qvar has to be equal to val - f(0) if it appears positively in f
1378
- // (ie if f(qvar)=f(0) + qvar) and f(0) - val if it appears negatively
1378
+ // (i.e. if f(qvar)=f(0) + qvar) and f(0) - val if it appears negatively
1379
1379
// in f. So we start by computing val - f(0).
1380
1380
std::map<exprt, int > elems=map_representation_of_sum (minus_exprt (val, f));
1381
1381
@@ -1611,7 +1611,7 @@ exprt find_index(const exprt &expr, const exprt &str, const symbol_exprt &qvar)
1611
1611
// / \return substitute `qvar` the universally quantified variable of `axiom`, by
1612
1612
// / an index `val`, in `axiom`, so that the index used for `str` equals `val`.
1613
1613
// / For instance, if `axiom` corresponds to $\forall q. s[q+x]='a' &&
1614
- // / t[q]='b'$, `instantiate(axom ,s,v)` would return an expression for
1614
+ // / t[q]='b'$, `instantiate(axiom ,s,v)` would return an expression for
1615
1615
// / $s[v]='a' && t[v-x]='b'$.
1616
1616
exprt string_refinementt::instantiate (
1617
1617
const string_constraintt &axiom, const exprt &str, const exprt &val)
@@ -1690,7 +1690,7 @@ void string_refinementt::instantiate_not_contains(
1690
1690
1691
1691
// / replace array-lists by 'with' expressions
1692
1692
// / \par parameters: an expression containing array-list expressions
1693
- // / \return an epression containing no array-list
1693
+ // / \return an expression containing no array-list
1694
1694
exprt string_refinementt::substitute_array_lists (exprt expr) const
1695
1695
{
1696
1696
for (size_t i=0 ; i<expr.operands ().size (); ++i)
@@ -1761,7 +1761,7 @@ exprt string_refinementt::get(const exprt &expr) const
1761
1761
}
1762
1762
1763
1763
// / Creates a solver with `axiom` as the only formula added and runs it. If it
1764
- // / is SAT, then true is returned and the given evalutation of `var` is stored
1764
+ // / is SAT, then true is returned and the given evaluation of `var` is stored
1765
1765
// / in `witness`. If UNSAT, then what witness is is undefined.
1766
1766
// / \param [in] axiom: the axiom to be checked
1767
1767
// / \param [in] var: the variable whose evaluation will be stored in witness
0 commit comments