forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparsers.py
743 lines (632 loc) · 24.5 KB
/
parsers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
"""
Module contains tools for processing files into DataFrames or other objects
"""
from StringIO import StringIO
import re
from itertools import izip
import numpy as np
from pandas.core.index import Index, MultiIndex
from pandas.core.frame import DataFrame
import datetime
import pandas.core.common as com
import pandas._tseries as lib
from pandas.util.decorators import Appender
_parser_params = """Also supports optionally iterating or breaking of the file
into chunks.
Parameters
----------
filepath_or_buffer : string or file handle / StringIO
%s
header : int, default 0
Row to use for the column labels of the parsed DataFrame
skiprows : list-like or integer
Row numbers to skip (0-indexed) or number of rows to skip (int)
index_col : int or sequence, default None
Column to use as the row labels of the DataFrame. If a sequence is
given, a MultiIndex is used.
names : array-like
List of column names
na_values : list-like, default None
List of additional strings to recognize as NA/NaN
parse_dates : boolean, default False
Attempt to parse dates in the index column(s)
date_parser : function
Function to use for converting dates to strings. Defaults to
dateutil.parser
nrows : int, default None
Number of rows of file to read. Useful for reading pieces of large files
iterator : boolean, default False
Return TextParser object
chunksize : int, default None
Return TextParser object for iteration
skip_footer : int, default 0
Number of line at bottom of file to skip
converters : dict. optional
Dict of functions for converting values in certain columns. Keys can either
be integers or column labels
verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns
delimiter : string, default None
Alternative argument name for sep
encoding : string, default None
Encoding to use for UTF when reading/writing (ex. 'utf-8')
Returns
-------
result : DataFrame or TextParser
"""
_csv_sep = """sep : string, default ','
Delimiter to use. If sep is None, will try to automatically determine
this"""
_table_sep = """sep : string, default \\t (tab-stop)
Delimiter to use"""
_read_csv_doc = """
Read CSV (comma-separated) file into DataFrame
%s
""" % (_parser_params % _csv_sep)
_read_csv_doc = """
Read CSV (comma-separated) file into DataFrame
%s
""" % (_parser_params % _csv_sep)
_read_table_doc = """
Read general delimited file into DataFrame
%s
""" % (_parser_params % _table_sep)
@Appender(_read_csv_doc)
def read_csv(filepath_or_buffer, sep=',', header=0, index_col=None, names=None,
skiprows=None, na_values=None, parse_dates=False,
date_parser=None, nrows=None, iterator=False, chunksize=None,
skip_footer=0, converters=None, verbose=False, delimiter=None,
encoding=None):
if hasattr(filepath_or_buffer, 'read'):
f = filepath_or_buffer
else:
try:
# universal newline mode
f = open(filepath_or_buffer, 'U')
except Exception: # pragma: no cover
f = open(filepath_or_buffer, 'r')
if delimiter is not None:
sep = delimiter
if date_parser is not None:
parse_dates = True
parser = TextParser(f, header=header, index_col=index_col,
names=names, na_values=na_values,
parse_dates=parse_dates,
date_parser=date_parser,
skiprows=skiprows,
delimiter=sep,
chunksize=chunksize,
skip_footer=skip_footer,
converters=converters,
verbose=verbose,
encoding=encoding)
if nrows is not None:
return parser.get_chunk(nrows)
elif chunksize or iterator:
return parser
return parser.get_chunk()
@Appender(_read_table_doc)
def read_table(filepath_or_buffer, sep='\t', header=0, index_col=None,
names=None, skiprows=None, na_values=None, parse_dates=False,
date_parser=None, nrows=None, iterator=False, chunksize=None,
skip_footer=0, converters=None, verbose=False, delimiter=None,
encoding=None):
return read_csv(filepath_or_buffer, sep=sep, header=header,
skiprows=skiprows, index_col=index_col,
na_values=na_values, date_parser=date_parser,
names=names, parse_dates=parse_dates,
nrows=nrows, iterator=iterator, chunksize=chunksize,
skip_footer=skip_footer, converters=converters,
verbose=verbose, delimiter=delimiter, encoding=None)
def read_clipboard(**kwargs): # pragma: no cover
"""
Read text from clipboard and pass to read_table. See read_table for the full
argument list
Returns
-------
parsed : DataFrame
"""
from pandas.util.clipboard import clipboard_get
text = clipboard_get()
return read_table(StringIO(text), **kwargs)
class BufferedReader(object):
"""
For handling different kinds of files, e.g. zip files where reading out a
chunk of lines is faster than reading out one line at a time.
"""
def __init__(self, fh, delimiter=','):
pass # pragma: no coverage
class BufferedCSVReader(BufferedReader):
pass
class TextParser(object):
"""
Converts lists of lists/tuples into DataFrames with proper type inference
and optional (e.g. string to datetime) conversion. Also enables iterating
lazily over chunks of large files
Parameters
----------
data : file-like object or list
names : sequence, default
header : int, default 0
Row to use to parse column labels. Defaults to the first row. Prior
rows will be discarded
index_col : int or list, default None
Column or columns to use as the (possibly hierarchical) index
na_values : iterable, defualt None
Custom NA values
parse_dates : boolean, default False
date_parser : function, default None
skiprows : list of integers
Row numbers to skip
skip_footer : int
Number of line at bottom of file to skip
encoding : string, default None
Encoding to use for UTF when reading/writing (ex. 'utf-8')
"""
# common NA values
# no longer excluding inf representations
# '1.#INF','-1.#INF', '1.#INF000000',
NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN',
'#N/A N/A', 'NA', '#NA', 'NULL', 'NaN',
'nan', ''])
def __init__(self, f, delimiter=None, names=None, header=0,
index_col=None, na_values=None, parse_dates=False,
date_parser=None, chunksize=None, skiprows=None,
skip_footer=0, converters=None, verbose=False,
encoding=None):
"""
Workhorse function for processing nested list into DataFrame
Should be replaced by np.genfromtxt eventually?
"""
self.data = None
self.buf = []
self.pos = 0
self.names = list(names) if names is not None else names
self.header = header
self.index_col = index_col
self.parse_dates = parse_dates
self.date_parser = date_parser
self.chunksize = chunksize
self.passed_names = names is not None
self.encoding = encoding
if com.is_integer(skiprows):
skiprows = range(skiprows)
self.skiprows = set() if skiprows is None else set(skiprows)
self.skip_footer = skip_footer
self.delimiter = delimiter
self.verbose = verbose
if converters is not None:
assert(isinstance(converters, dict))
self.converters = converters
else:
self.converters = {}
assert(self.skip_footer >= 0)
if na_values is None:
self.na_values = self.NA_VALUES
else:
self.na_values = set(list(na_values)) | self.NA_VALUES
if hasattr(f, 'readline'):
self._make_reader(f)
else:
self.data = f
self.columns = self._infer_columns()
self.index_name = self._get_index_name()
self._first_chunk = True
def _make_reader(self, f):
import csv
sep = self.delimiter
if sep is None or len(sep) == 1:
sniff_sep = True
# default dialect
dia = csv.excel
if sep is not None:
sniff_sep = False
dia.delimiter = sep
# attempt to sniff the delimiter
if sniff_sep:
line = f.readline()
while self.pos in self.skiprows:
self.pos += 1
line = f.readline()
self.pos += 1
sniffed = csv.Sniffer().sniff(line)
dia.delimiter = sniffed.delimiter
if self.encoding is not None:
self.buf.extend(list(
com.UnicodeReader(StringIO(line),
dialect=dia,
encoding=self.encoding)))
else:
self.buf.extend(list(csv.reader(StringIO(line),
dialect=dia)))
if self.encoding is not None:
reader = com.UnicodeReader(f, dialect=dia,
encoding=self.encoding)
else:
reader = csv.reader(f, dialect=dia)
else:
reader = (re.split(sep, line.strip()) for line in f)
self.data = reader
def _infer_columns(self):
names = self.names
passed_names = self.names is not None
if passed_names:
self.header = None
if self.header is not None:
if len(self.buf) > 0:
line = self.buf[0]
else:
line = self._next_line()
while self.pos <= self.header:
line = self._next_line()
columns = []
for i, c in enumerate(line):
if c == '':
columns.append('Unnamed: %d' % i)
else:
columns.append(c)
counts = {}
for i, col in enumerate(columns):
cur_count = counts.get(col, 0)
if cur_count > 0:
columns[i] = '%s.%d' % (col, cur_count)
counts[col] = cur_count + 1
self._clear_buffer()
else:
line = self._next_line()
ncols = len(line)
if not names:
columns = ['X.%d' % (i + 1) for i in range(ncols)]
else:
columns = names
return columns
def _next_line(self):
if isinstance(self.data, list):
while self.pos in self.skiprows:
self.pos += 1
line = self.data[self.pos]
else:
while self.pos in self.skiprows:
self.data.next()
self.pos += 1
line = self.data.next()
self.pos += 1
self.buf.append(line)
return line
def _clear_buffer(self):
self.buf = []
def __iter__(self):
try:
while True:
yield self.get_chunk(self.chunksize)
except StopIteration:
pass
def _get_index_name(self):
columns = self.columns
try:
line = self._next_line()
except StopIteration:
line = None
try:
next_line = self._next_line()
except StopIteration:
next_line = None
index_name = None
# implicitly index_col=0 b/c 1 fewer column names
implicit_first_cols = 0
if line is not None:
implicit_first_cols = len(line) - len(columns)
if next_line is not None:
if len(next_line) == len(line) + len(columns):
implicit_first_cols = 0
self.index_col = range(len(line))
self.buf = self.buf[1:]
return line
if implicit_first_cols > 0:
if self.index_col is None:
if implicit_first_cols == 1:
self.index_col = 0
else:
self.index_col = range(implicit_first_cols)
index_name = None
elif np.isscalar(self.index_col):
index_name = columns.pop(self.index_col)
if 'Unnamed' in index_name:
index_name = None
elif self.index_col is not None:
cp_cols = list(columns)
index_name = []
for i in self.index_col:
name = cp_cols[i]
columns.remove(name)
index_name.append(name)
return index_name
def get_chunk(self, rows=None):
if rows is not None and self.skip_footer:
raise ValueError('skip_footer not supported for iteration')
try:
content = self._get_lines(rows)
except StopIteration:
if self._first_chunk:
content = []
else:
raise
# done with first read, next time raise StopIteration
self._first_chunk = False
if len(content) == 0: # pragma: no cover
if self.index_col is not None:
if np.isscalar(self.index_col):
index = Index([], name=self.index_name)
else:
index = MultiIndex.from_arrays([[]] * len(self.index_col),
names=self.index_name)
else:
index = Index([])
return DataFrame(index=index, columns=self.columns)
zipped_content = list(lib.to_object_array(content).T)
# no index column specified, so infer that's what is wanted
if self.index_col is not None:
if np.isscalar(self.index_col):
index = zipped_content.pop(self.index_col)
else: # given a list of index
index = []
for idx in self.index_col:
index.append(zipped_content[idx])
# remove index items from content and columns, don't pop in loop
for i in reversed(sorted(self.index_col)):
zipped_content.pop(i)
if np.isscalar(self.index_col):
if self.parse_dates:
index = lib.try_parse_dates(index, parser=self.date_parser)
index, na_count = _convert_types(index, self.na_values)
index = Index(index, name=self.index_name)
if self.verbose and na_count:
print 'Found %d NA values in the index' % na_count
else:
arrays = []
for arr in index:
if self.parse_dates:
arr = lib.try_parse_dates(arr, parser=self.date_parser)
arr, _ = _convert_types(arr, self.na_values)
arrays.append(arr)
index = MultiIndex.from_arrays(arrays, names=self.index_name)
else:
index = Index(np.arange(len(content)))
if not index._verify_integrity():
dups = index.get_duplicates()
raise Exception('Index has duplicates: %s' % str(dups))
if len(self.columns) != len(zipped_content):
raise Exception('wrong number of columns')
data = dict((k, v) for k, v in izip(self.columns, zipped_content))
# apply converters
for col, f in self.converters.iteritems():
if isinstance(col, int) and col not in self.columns:
col = self.columns[col]
result = np.vectorize(f)(data[col])
if issubclass(result.dtype.type, (basestring, unicode)):
result = result.astype('O')
data[col] = result
data = _convert_to_ndarrays(data, self.na_values, self.verbose)
return DataFrame(data=data, columns=self.columns, index=index)
def _get_lines(self, rows=None):
source = self.data
lines = self.buf
# already fetched some number
if rows is not None:
rows -= len(self.buf)
if isinstance(source, list):
if self.pos > len(source):
raise StopIteration
if rows is None:
lines.extend(source[self.pos:])
self.pos = len(source)
else:
lines.extend(source[self.pos:self.pos+rows])
self.pos += rows
else:
try:
if rows is not None:
for _ in xrange(rows):
lines.append(source.next())
else:
while True:
lines.append(source.next())
except StopIteration:
if len(lines) == 0:
raise
self.pos += len(lines)
self.buf = []
if self.skip_footer:
lines = lines[:-self.skip_footer]
return lines
def _convert_to_ndarrays(dct, na_values, verbose=False):
result = {}
for c, values in dct.iteritems():
cvals, na_count = _convert_types(values, na_values)
result[c] = cvals
if verbose and na_count:
print 'Filled %d NA values in column %s' % (na_count, str(c))
return result
def _convert_types(values, na_values):
na_count = 0
if issubclass(values.dtype.type, (np.number, np.bool_)):
return values, na_count
try:
result = lib.maybe_convert_numeric(values, na_values)
except Exception:
na_count = lib.sanitize_objects(values, na_values)
result = values
if result.dtype == np.object_:
result = lib.maybe_convert_bool(values)
return result, na_count
#-------------------------------------------------------------------------------
# ExcelFile class
class ExcelFile(object):
"""
Class for parsing tabular .xls sheets into DataFrame objects, uses xlrd. See
ExcelFile.parse for more documentation
Parameters
----------
path : string
Path to xls file
"""
def __init__(self, path):
self.use_xlsx = True
if path.endswith('.xls'):
self.use_xlsx = False
import xlrd
self.book = xlrd.open_workbook(path)
else:
from openpyxl import load_workbook
self.book = load_workbook(path, use_iterators=True)
self.path = path
def __repr__(self):
return object.__repr__(self)
def parse(self, sheetname, header=0, skiprows=None, index_col=None,
parse_dates=False, date_parser=None, na_values=None,
chunksize=None):
"""
Read Excel table into DataFrame
Parameters
----------
sheetname : string
Name of Excel sheet
header : int, default 0
Row to use for the column labels of the parsed DataFrame
skiprows : list-like
Row numbers to skip (0-indexed)
index_col : int, default None
Column to use as the row labels of the DataFrame. Pass None if there
is no such column
na_values : list-like, default None
List of additional strings to recognize as NA/NaN
Returns
-------
parsed : DataFrame
"""
if self.use_xlsx:
return self._parse_xlsx(sheetname, header=header, skiprows=skiprows, index_col=index_col,
parse_dates=parse_dates, date_parser=date_parser, na_values=na_values,
chunksize=chunksize)
else:
return self._parse_xls(sheetname, header=header, skiprows=skiprows, index_col=index_col,
parse_dates=parse_dates, date_parser=date_parser, na_values=na_values,
chunksize=chunksize)
def _parse_xlsx(self, sheetname, header=0, skiprows=None, index_col=None,
parse_dates=False, date_parser=None, na_values=None,
chunksize=None):
sheet = self.book.get_sheet_by_name(name=sheetname)
data = []
for row in sheet.iter_rows(): # it brings a new method: iter_rows()
data.append([cell.internal_value for cell in row])
parser = TextParser(data, header=header, index_col=index_col,
na_values=na_values,
parse_dates=parse_dates,
date_parser=date_parser,
skiprows=skiprows,
chunksize=chunksize)
return parser.get_chunk()
def _parse_xls(self, sheetname, header=0, skiprows=None, index_col=None,
parse_dates=False, date_parser=None, na_values=None,
chunksize=None):
from datetime import MINYEAR, time, datetime
from xlrd import xldate_as_tuple, XL_CELL_DATE
datemode = self.book.datemode
sheet = self.book.sheet_by_name(sheetname)
data = []
for i in range(sheet.nrows):
row = []
for value, typ in izip(sheet.row_values(i), sheet.row_types(i)):
if typ == XL_CELL_DATE:
dt = xldate_as_tuple(value, datemode)
# how to produce this first case?
if dt[0] < MINYEAR: # pragma: no cover
value = time(*dt[3:])
else:
value = datetime(*dt)
row.append(value)
data.append(row)
parser = TextParser(data, header=header, index_col=index_col,
na_values=na_values,
parse_dates=parse_dates,
date_parser=date_parser,
skiprows=skiprows,
chunksize=chunksize)
return parser.get_chunk()
class ExcelWriter(object):
"""
Class for writing DataFrame objects into excel sheets, uses xlwt for xls,
openpyxl for xlsx. See DataFrame.to_excel for typical usage.
Parameters
----------
path : string
Path to xls file
"""
def __init__(self, path):
self.use_xlsx = True
if path.endswith('.xls'):
self.use_xlsx = False
import xlwt
self.book = xlwt.Workbook()
self.fm_datetime = xlwt.easyxf(num_format_str='YYYY-MM-DD HH:MM:SS')
self.fm_date = xlwt.easyxf(num_format_str='YYYY-MM-DD')
else:
from openpyxl import Workbook
self.book = Workbook(optimized_write = True)
self.path = path
self.sheets = {}
self.cur_sheet = None
def save(self):
"""
Save workbook to disk
"""
self.book.save(self.path)
def writerow(self, row, sheet_name=None):
"""
Write the given row into Excel an excel sheet
Parameters
----------
row : list
Row of data to save to Excel sheet
sheet_name : string, default None
Name of Excel sheet, if None, then use self.cur_sheet
"""
if sheet_name is None:
sheet_name = self.cur_sheet
if sheet_name is None:
raise Exception('Must pass explicit sheet_name or set cur_sheet property')
if self.use_xlsx:
self._writerow_xlsx(row, sheet_name)
else:
self._writerow_xls(row, sheet_name)
def _writerow_xls(self, row, sheet_name):
if sheet_name in self.sheets:
sheet, row_idx = self.sheets[sheet_name]
else:
sheet = self.book.add_sheet(sheet_name)
row_idx = 0
sheetrow = sheet.row(row_idx)
for i, val in enumerate(row):
if isinstance(val, (datetime.datetime, datetime.date)):
if isinstance(val, datetime.datetime):
sheetrow.write(i,val,self.fm_datetime)
else:
sheetrow.write(i,val,self.fm_date)
elif isinstance(val, np.int64):
sheetrow.write(i,int(val))
else:
sheetrow.write(i,val)
row_idx += 1
if row_idx == 1000:
sheet.flush_row_data()
self.sheets[sheet_name] = (sheet, row_idx)
def _writerow_xlsx(self, row, sheet_name):
if sheet_name in self.sheets:
sheet, row_idx = self.sheets[sheet_name]
else:
sheet = self.book.create_sheet()
sheet.title = sheet_name
row_idx = 0
sheet.append([int(val) if isinstance(val, np.int64) else val for val in row])
row_idx += 1
self.sheets[sheet_name] = (sheet, row_idx)