forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpanel.py
1264 lines (1020 loc) · 38.5 KB
/
panel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Contains data structures designed for manipulating panel (3-dimensional) data
"""
# pylint: disable=E1103,W0231,W0212,W0621
import operator
import sys
import numpy as np
from pandas.core.common import (PandasError, _mut_exclusive,
_try_sort, _default_index, _infer_dtype)
from pandas.core.index import (Factor, Index, MultiIndex, _ensure_index,
_get_combined_index, NULL_INDEX)
from pandas.core.indexing import _NDFrameIndexer
from pandas.core.internals import BlockManager, make_block, form_blocks
from pandas.core.frame import DataFrame
from pandas.core.generic import NDFrame
from pandas.util import py3compat
from pandas.util.decorators import deprecate, Appender, Substitution
import pandas.core.common as com
import pandas.core.nanops as nanops
import pandas._tseries as lib
def _ensure_like_indices(time, panels):
"""
Makes sure that time and panels are conformable
"""
n_time = len(time)
n_panel = len(panels)
u_panels = np.unique(panels) # this sorts!
u_time = np.unique(time)
if len(u_time) == n_time:
time = np.tile(u_time, len(u_panels))
if len(u_panels) == n_panel:
panels = np.repeat(u_panels, len(u_time))
return time, panels
def panel_index(time, panels, names=['time', 'panel']):
"""
Returns a multi-index suitable for a panel-like DataFrame
Parameters
----------
time : array-like
Time index, does not have to repeat
panels : array-like
Panel index, does not have to repeat
names : list, optional
List containing the names of the indices
Returns
-------
multi_index : MultiIndex
Time index is the first level, the panels are the second level.
Examples
--------
>>> years = range(1960,1963)
>>> panels = ['A', 'B', 'C']
>>> panel_idx = panel_index(years, panels)
>>> panel_idx
MultiIndex([(1960, 'A'), (1961, 'A'), (1962, 'A'), (1960, 'B'), (1961, 'B'),
(1962, 'B'), (1960, 'C'), (1961, 'C'), (1962, 'C')], dtype=object)
or
>>> import numpy as np
>>> years = np.repeat(range(1960,1963), 3)
>>> panels = np.tile(['A', 'B', 'C'], 3)
>>> panel_idx = panel_index(years, panels)
>>> panel_idx
MultiIndex([(1960, 'A'), (1960, 'B'), (1960, 'C'), (1961, 'A'), (1961, 'B'),
(1961, 'C'), (1962, 'A'), (1962, 'B'), (1962, 'C')], dtype=object)
"""
time, panels = _ensure_like_indices(time, panels)
time_factor = Factor(time)
panel_factor = Factor(panels)
labels = [time_factor.labels, panel_factor.labels]
levels = [time_factor.levels, panel_factor.levels]
return MultiIndex(levels, labels, sortorder=None, names=names)
class PanelError(Exception):
pass
def _arith_method(func, name):
# work only for scalars
def f(self, other):
if not np.isscalar(other):
raise ValueError('Simple arithmetic with Panel can only be '
'done with scalar values')
return self._combine(other, func)
f.__name__ = name
return f
def _panel_arith_method(op, name):
@Substitution(op)
def f(self, other, axis='items'):
"""
Wrapper method for %s
Parameters
----------
other : DataFrame or Panel class
axis : {'items', 'major', 'minor'}
Axis to broadcast over
Returns
-------
Panel
"""
return self._combine(other, op, axis=axis)
f.__name__ = name
return f
_agg_doc = """
Return %(desc)s over requested axis
Parameters
----------
axis : {'items', 'major', 'minor'} or {0, 1, 2}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA
Returns
-------
%(outname)s : DataFrame
"""
_na_info = """
NA/null values are %s.
If all values are NA, result will be NA"""
class Panel(NDFrame):
_AXIS_NUMBERS = {
'items' : 0,
'major_axis' : 1,
'minor_axis' : 2
}
_AXIS_ALIASES = {
'major' : 'major_axis',
'minor' : 'minor_axis'
}
_AXIS_NAMES = {
0 : 'items',
1 : 'major_axis',
2 : 'minor_axis'
}
# major
_default_stat_axis = 1
_het_axis = 0
items = lib.AxisProperty(0)
major_axis = lib.AxisProperty(1)
minor_axis = lib.AxisProperty(2)
__add__ = _arith_method(operator.add, '__add__')
__sub__ = _arith_method(operator.sub, '__sub__')
__truediv__ = _arith_method(operator.truediv, '__truediv__')
__floordiv__ = _arith_method(operator.floordiv, '__floordiv__')
__mul__ = _arith_method(operator.mul, '__mul__')
__pow__ = _arith_method(operator.pow, '__pow__')
__radd__ = _arith_method(operator.add, '__radd__')
__rmul__ = _arith_method(operator.mul, '__rmul__')
__rsub__ = _arith_method(lambda x, y: y - x, '__rsub__')
__rtruediv__ = _arith_method(lambda x, y: y / x, '__rtruediv__')
__rfloordiv__ = _arith_method(lambda x, y: y // x, '__rfloordiv__')
__rpow__ = _arith_method(lambda x, y: y ** x, '__rpow__')
if not py3compat.PY3:
__div__ = _arith_method(operator.div, '__div__')
__rdiv__ = _arith_method(lambda x, y: y / x, '__rdiv__')
def __init__(self, data=None, items=None, major_axis=None, minor_axis=None,
copy=False, dtype=None):
"""
Represents wide format panel data, stored as 3-dimensional array
Parameters
----------
data : ndarray (items x major x minor), or dict of DataFrames
items : Index or array-like
axis=1
major_axis : Index or array-like
axis=1
minor_axis : Index or array-like
axis=2
dtype : dtype, default None
Data type to force, otherwise infer
copy : boolean, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input
"""
if data is None:
data = {}
passed_axes = [items, major_axis, minor_axis]
axes = None
if isinstance(data, BlockManager):
if any(x is not None for x in passed_axes):
axes = [x if x is not None else y
for x, y in zip(passed_axes, data.axes)]
mgr = data
elif isinstance(data, dict):
mgr = self._init_dict(data, passed_axes, dtype=dtype)
copy = False
dtype = None
elif isinstance(data, (np.ndarray, list)):
mgr = self._init_matrix(data, passed_axes, dtype=dtype, copy=copy)
copy = False
dtype = None
else: # pragma: no cover
raise PandasError('Panel constructor not properly called!')
NDFrame.__init__(self, mgr, axes=axes, copy=copy, dtype=dtype)
@classmethod
def _from_axes(cls, data, axes):
# for construction from BlockManager
if isinstance(data, BlockManager):
return cls(data)
else:
items, major, minor = axes
return cls(data, items=items, major_axis=major,
minor_axis=minor, copy=False)
def _init_dict(self, data, axes, dtype=None):
items, major, minor = axes
# prefilter if items passed
if items is not None:
items = _ensure_index(items)
data = dict((k, v) for k, v in data.iteritems() if k in items)
else:
items = Index(_try_sort(data.keys()))
for k, v in data.iteritems():
if isinstance(v, dict):
data[k] = DataFrame(v)
if major is None:
major = _extract_axis(data, axis=0)
if minor is None:
minor = _extract_axis(data, axis=1)
axes = [items, major, minor]
reshaped_data = data.copy() # shallow
item_shape = len(major), len(minor)
for item in items:
v = values = data.get(item)
if v is None:
values = np.empty(item_shape, dtype=dtype)
values.fill(np.nan)
elif isinstance(v, DataFrame):
v = v.reindex(index=major, columns=minor, copy=False)
if dtype is not None:
v = v.astype(dtype)
values = v.values
reshaped_data[item] = values
# segregates dtypes and forms blocks matching to columns
blocks = form_blocks(reshaped_data, axes)
mgr = BlockManager(blocks, axes).consolidate()
return mgr
@property
def shape(self):
return len(self.items), len(self.major_axis), len(self.minor_axis)
@classmethod
def from_dict(cls, data, intersect=False, orient='items', dtype=None):
"""
Construct Panel from dict of DataFrame objects
Parameters
----------
data : dict
{field : DataFrame}
intersect : boolean
Intersect indexes of input DataFrames
orient : {'items', 'minor'}, default 'items'
The "orientation" of the data. If the keys of the passed dict
should be the items of the result panel, pass 'items'
(default). Otherwise if the columns of the values of the passed
DataFrame objects should be the items (which in the case of
mixed-dtype data you should do), instead pass 'minor'
Returns
-------
Panel
"""
from collections import defaultdict
orient = orient.lower()
if orient == 'minor':
new_data = defaultdict(dict)
for col, df in data.iteritems():
for item, s in df.iteritems():
new_data[item][col] = s
data = new_data
elif orient != 'items': # pragma: no cover
raise ValueError('only recognize items or minor for orientation')
data, index, columns = _homogenize_dict(data, intersect=intersect,
dtype=dtype)
items = Index(sorted(data.keys()))
return Panel(data, items, index, columns)
def _init_matrix(self, data, axes, dtype=None, copy=False):
values = _prep_ndarray(data, copy=copy)
if dtype is not None:
try:
values = values.astype(dtype)
except Exception:
raise ValueError('failed to cast to %s' % dtype)
shape = values.shape
fixed_axes = []
for i, ax in enumerate(axes):
if ax is None:
ax = _default_index(shape[i])
else:
ax = _ensure_index(ax)
fixed_axes.append(ax)
items = fixed_axes[0]
block = make_block(values, items, items)
return BlockManager([block], fixed_axes)
def __repr__(self):
class_name = str(self.__class__)
I, N, K = len(self.items), len(self.major_axis), len(self.minor_axis)
dims = 'Dimensions: %d (items) x %d (major) x %d (minor)' % (I, N, K)
if len(self.major_axis) > 0:
major = 'Major axis: %s to %s' % (self.major_axis[0],
self.major_axis[-1])
else:
major = 'Major axis: None'
if len(self.minor_axis) > 0:
minor = 'Minor axis: %s to %s' % (self.minor_axis[0],
self.minor_axis[-1])
else:
minor = 'Minor axis: None'
if len(self.items) > 0:
items = 'Items: %s to %s' % (self.items[0], self.items[-1])
else:
items = 'Items: None'
output = '%s\n%s\n%s\n%s\n%s' % (class_name, dims, items, major, minor)
return output
def __iter__(self):
return iter(self.items)
def iteritems(self):
for item in self.items:
yield item, self[item]
# Name that won't get automatically converted to items by 2to3. items is
# already in use for the first axis.
iterkv = iteritems
def _get_plane_axes(self, axis):
"""
"""
axis = self._get_axis_name(axis)
if axis == 'major_axis':
index = self.minor_axis
columns = self.items
if axis == 'minor_axis':
index = self.major_axis
columns = self.items
elif axis == 'items':
index = self.major_axis
columns = self.minor_axis
return index, columns
@property
def _constructor(self):
return Panel
# Fancy indexing
_ix = None
@property
def ix(self):
if self._ix is None:
self._ix = _NDFrameIndexer(self)
return self._ix
def _wrap_array(self, arr, axes, copy=False):
items, major, minor = axes
return self._constructor(arr, items=items, major_axis=major,
minor_axis=minor, copy=copy)
fromDict = from_dict
def to_sparse(self, fill_value=None, kind='block'):
"""
Convert to SparsePanel
Parameters
----------
fill_value : float, default NaN
kind : {'block', 'integer'}
Returns
-------
y : SparseDataFrame
"""
from pandas.core.sparse import SparsePanel
frames = dict(self.iterkv())
return SparsePanel(frames, items=self.items,
major_axis=self.major_axis,
minor_axis=self.minor_axis,
default_kind=kind,
default_fill_value=fill_value)
def to_excel(self, path, na_rep=''):
"""
Write each DataFrame in Panel to a separate excel sheet
Parameters
----------
excel_writer : string or ExcelWriter object
File path or existing ExcelWriter
na_rep : string, default ''
Missing data rep'n
"""
from pandas.io.parsers import ExcelWriter
writer = ExcelWriter(path)
for item, df in self.iteritems():
name = str(item)
df.to_excel(writer, name, na_rep=na_rep)
writer.save()
# TODO: needed?
def keys(self):
return list(self.items)
def _get_values(self):
self._consolidate_inplace()
return self._data.as_matrix()
values = property(fget=_get_values)
#----------------------------------------------------------------------
# Getting and setting elements
def get_value(self, item, major, minor):
"""
Quickly retrieve single value at (item, major, minor) location
Parameters
----------
item : item label (panel item)
major : major axis label (panel item row)
minor : minor axis label (panel item column)
Returns
-------
value : scalar value
"""
# hm, two layers to the onion
frame = self._get_item_cache(item)
return frame.get_value(major, minor)
def set_value(self, item, major, minor, value):
"""
Quickly set single value at (item, major, minor) location
Parameters
----------
item : item label (panel item)
major : major axis label (panel item row)
minor : minor axis label (panel item column)
value : scalar
Returns
-------
panel : Panel
If label combo is contained, will be reference to calling Panel,
otherwise a new object
"""
try:
frame = self._get_item_cache(item)
frame.set_value(major, minor, value)
return self
except KeyError:
ax1, ax2, ax3 = self._expand_axes((item, major, minor))
result = self.reindex(items=ax1, major=ax2, minor=ax3, copy=False)
likely_dtype = com._infer_dtype(value)
made_bigger = not np.array_equal(ax1, self.items)
# how to make this logic simpler?
if made_bigger:
com._possibly_cast_item(result, item, likely_dtype)
return result.set_value(item, major, minor, value)
def _box_item_values(self, key, values):
return DataFrame(values, index=self.major_axis, columns=self.minor_axis)
def __getattr__(self, name):
"""After regular attribute access, try looking up the name of an item.
This allows simpler access to items for interactive use."""
if name in self.items:
return self[name]
raise AttributeError("'%s' object has no attribute '%s'" %
(type(self).__name__, name))
def _slice(self, slobj, axis=0):
new_data = self._data.get_slice(slobj, axis=axis)
return self._constructor(new_data)
def __setitem__(self, key, value):
_, N, K = self.shape
if isinstance(value, DataFrame):
value = value.reindex(index=self.major_axis,
columns=self.minor_axis)
mat = value.values
elif isinstance(value, np.ndarray):
assert(value.shape == (N, K))
mat = np.asarray(value)
elif np.isscalar(value):
dtype = _infer_dtype(value)
mat = np.empty((N, K), dtype=dtype)
mat.fill(value)
mat = mat.reshape((1, N, K))
NDFrame._set_item(self, key, mat)
def pop(self, item):
"""
Return item slice from panel and delete from panel
Parameters
----------
key : object
Must be contained in panel's items
Returns
-------
y : DataFrame
"""
return NDFrame.pop(self, item)
def __getstate__(self):
"Returned pickled representation of the panel"
return self._data
def __setstate__(self, state):
# old Panel pickle
if isinstance(state, BlockManager):
self._data = state
elif len(state) == 4: # pragma: no cover
self._unpickle_panel_compat(state)
else: # pragma: no cover
raise ValueError('unrecognized pickle')
self._item_cache = {}
def _unpickle_panel_compat(self, state): # pragma: no cover
"Unpickle the panel"
_unpickle = com._unpickle_array
vals, items, major, minor = state
items = _unpickle(items)
major = _unpickle(major)
minor = _unpickle(minor)
values = _unpickle(vals)
wp = Panel(values, items, major, minor)
self._data = wp._data
def conform(self, frame, axis='items'):
"""
Conform input DataFrame to align with chosen axis pair.
Parameters
----------
frame : DataFrame
axis : {'items', 'major', 'minor'}
Axis the input corresponds to. E.g., if axis='major', then
the frame's columns would be items, and the index would be
values of the minor axis
Returns
-------
DataFrame
"""
index, columns = self._get_plane_axes(axis)
return frame.reindex(index=index, columns=columns)
def reindex(self, major=None, items=None, minor=None, method=None,
major_axis=None, minor_axis=None, copy=True):
"""
Conform panel to new axis or axes
Parameters
----------
major : Index or sequence, default None
Can also use 'major_axis' keyword
items : Index or sequence, default None
minor : Index or sequence, default None
Can also use 'minor_axis' keyword
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use NEXT valid observation to fill gap
copy : boolean, default True
Return a new object, even if the passed indexes are the same
Returns
-------
Panel (new object)
"""
result = self
major = _mut_exclusive(major, major_axis)
minor = _mut_exclusive(minor, minor_axis)
if major is not None:
result = result._reindex_axis(major, method, 1, copy)
if minor is not None:
result = result._reindex_axis(minor, method, 2, copy)
if items is not None:
result = result._reindex_axis(items, method, 0, copy)
if result is self and copy:
raise ValueError('Must specify at least one axis')
return result
def reindex_like(self, other, method=None):
"""
Reindex Panel to match indices of another Panel
Parameters
----------
other : Panel
method : string or None
Returns
-------
reindexed : Panel
"""
# todo: object columns
return self.reindex(major=other.major_axis, items=other.items,
minor=other.minor_axis, method=method)
def _combine(self, other, func, axis=0):
if isinstance(other, Panel):
return self._combine_panel(other, func)
elif isinstance(other, DataFrame):
return self._combine_frame(other, func, axis=axis)
elif np.isscalar(other):
new_values = func(self.values, other)
return Panel(new_values, self.items, self.major_axis,
self.minor_axis)
def __neg__(self):
return -1 * self
def _combine_frame(self, other, func, axis=0):
index, columns = self._get_plane_axes(axis)
axis = self._get_axis_number(axis)
other = other.reindex(index=index, columns=columns)
if axis == 0:
new_values = func(self.values, other.values)
elif axis == 1:
new_values = func(self.values.swapaxes(0, 1), other.values.T)
new_values = new_values.swapaxes(0, 1)
elif axis == 2:
new_values = func(self.values.swapaxes(0, 2), other.values)
new_values = new_values.swapaxes(0, 2)
return Panel(new_values, self.items, self.major_axis,
self.minor_axis)
def _combine_panel(self, other, func):
items = self.items + other.items
major = self.major_axis + other.major_axis
minor = self.minor_axis + other.minor_axis
# could check that everything's the same size, but forget it
this = self.reindex(items=items, major=major, minor=minor)
other = other.reindex(items=items, major=major, minor=minor)
result_values = func(this.values, other.values)
return Panel(result_values, items, major, minor)
def fillna(self, value=None, method='pad'):
"""
Fill NaN values using the specified method.
Member Series / TimeSeries are filled separately.
Parameters
----------
value : any kind (should be same type as array)
Value to use to fill holes (e.g. 0)
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default 'pad'
Method to use for filling holes in reindexed Series
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use NEXT valid observation to fill gap
Returns
-------
y : DataFrame
See also
--------
DataFrame.reindex, DataFrame.asfreq
"""
if value is None:
result = {}
for col, s in self.iterkv():
result[col] = s.fillna(method=method, value=value)
return Panel.from_dict(result)
else:
new_data = self._data.fillna(value)
return Panel(new_data)
add = _panel_arith_method(operator.add, 'add')
subtract = sub = _panel_arith_method(operator.sub, 'subtract')
multiply = mul = _panel_arith_method(operator.mul, 'multiply')
try:
divide = div = _panel_arith_method(operator.div, 'divide')
except AttributeError: # pragma: no cover
# Python 3
divide = div = _panel_arith_method(operator.truediv, 'divide')
def major_xs(self, key, copy=True):
"""
Return slice of panel along major axis
Parameters
----------
key : object
Major axis label
copy : boolean, default False
Copy data
Returns
-------
y : DataFrame
index -> minor axis, columns -> items
"""
return self.xs(key, axis=1, copy=copy)
def minor_xs(self, key, copy=True):
"""
Return slice of panel along minor axis
Parameters
----------
key : object
Minor axis label
copy : boolean, default False
Copy data
Returns
-------
y : DataFrame
index -> major axis, columns -> items
"""
return self.xs(key, axis=2, copy=copy)
def xs(self, key, axis=1, copy=True):
"""
Return slice of panel along selected axis
Parameters
----------
key : object
Label
axis : {'items', 'major', 'minor}, default 1/'major'
Returns
-------
y : DataFrame
"""
if axis == 0:
data = self[key]
if copy:
data = data.copy()
return data
self._consolidate_inplace()
axis_number = self._get_axis_number(axis)
new_data = self._data.xs(key, axis=axis_number, copy=copy)
return DataFrame(new_data)
def groupby(self, function, axis='major'):
"""
Group data on given axis, returning GroupBy object
Parameters
----------
function : callable
Mapping function for chosen access
axis : {'major', 'minor', 'items'}, default 'major'
Returns
-------
grouped : PanelGroupBy
"""
from pandas.core.groupby import PanelGroupBy
axis = self._get_axis_number(axis)
return PanelGroupBy(self, function, axis=axis)
def swapaxes(self, axis1='major', axis2='minor'):
"""
Interchange axes and swap values axes appropriately
Returns
-------
y : Panel (new object)
"""
i = self._get_axis_number(axis1)
j = self._get_axis_number(axis2)
if i == j:
raise ValueError('Cannot specify the same axis')
mapping = {i : j, j : i}
new_axes = (self._get_axis(mapping.get(k, k))
for k in range(3))
new_values = self.values.swapaxes(i, j).copy()
return Panel(new_values, *new_axes)
def to_frame(self, filter_observations=True):
"""
Transform wide format into long (stacked) format as DataFrame
Parameters
----------
filter_observations : boolean, default True
Drop (major, minor) pairs without a complete set of observations
across all the items
Returns
-------
y : DataFrame
"""
_, N, K = self.shape
if filter_observations:
mask = com.notnull(self.values).all(axis=0)
# size = mask.sum()
selector = mask.ravel()
else:
# size = N * K
selector = slice(None, None)
data = {}
for item in self.items:
data[item] = self[item].values.ravel()[selector]
major_labels = np.arange(N).repeat(K)[selector]
# Anyone think of a better way to do this? np.repeat does not
# do what I want
minor_labels = np.arange(K).reshape(1, K)[np.zeros(N, dtype=int)]
minor_labels = minor_labels.ravel()[selector]
index = MultiIndex(levels=[self.major_axis, self.minor_axis],
labels=[major_labels, minor_labels],
names=['major', 'minor'])
return DataFrame(data, index=index, columns=self.items)
to_long = deprecate('to_long', to_frame)
toLong = deprecate('toLong', to_frame)
def filter(self, items):
"""
Restrict items in panel to input list
Parameters
----------
items : sequence
Returns
-------
y : Panel
"""
intersection = self.items.intersection(items)
return self.reindex(items=intersection)
def apply(self, func, axis='major'):
"""
Apply
Parameters
----------
func : numpy function
Signature should match numpy.{sum, mean, var, std} etc.
axis : {'major', 'minor', 'items'}
fill_value : boolean, default True
Replace NaN values with specified first
Returns
-------
result : DataFrame or Panel
"""
i = self._get_axis_number(axis)
result = np.apply_along_axis(func, i, self.values)
return self._wrap_result(result, axis=axis)
def _reduce(self, op, axis=0, skipna=True):
axis_name = self._get_axis_name(axis)
axis_number = self._get_axis_number(axis_name)
f = lambda x: op(x, axis=axis_number, skipna=skipna)
result = f(self.values)
index, columns = self._get_plane_axes(axis_name)
if axis_name != 'items':
result = result.T
return DataFrame(result, index=index, columns=columns)
def _wrap_result(self, result, axis):
axis = self._get_axis_name(axis)
index, columns = self._get_plane_axes(axis)
if axis != 'items':
result = result.T
return DataFrame(result, index=index, columns=columns)
def count(self, axis='major'):
"""
Return number of observations over requested axis.
Parameters
----------
axis : {'items', 'major', 'minor'} or {0, 1, 2}
Returns
-------
count : DataFrame
"""
i = self._get_axis_number(axis)
values = self.values
mask = np.isfinite(values)
result = mask.sum(axis=i)
return self._wrap_result(result, axis)
@Substitution(desc='sum', outname='sum')
@Appender(_agg_doc)
def sum(self, axis='major', skipna=True):
return self._reduce(nanops.nansum, axis=axis, skipna=skipna)
@Substitution(desc='mean', outname='mean')
@Appender(_agg_doc)
def mean(self, axis='major', skipna=True):
return self._reduce(nanops.nanmean, axis=axis, skipna=skipna)
@Substitution(desc='unbiased variance', outname='variance')