forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpickle.py
138 lines (111 loc) · 4.21 KB
/
pickle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
""" pickle compat """
import numpy as np
from numpy.lib.format import read_array, write_array
from pandas.compat import BytesIO, cPickle as pkl, pickle_compat as pc, PY3
from pandas.core.dtypes.common import is_datetime64_dtype, _NS_DTYPE
from pandas.io.common import _get_handle, _infer_compression, _stringify_path
def to_pickle(obj, path, compression='infer', protocol=pkl.HIGHEST_PROTOCOL):
"""
Pickle (serialize) object to input file path
Parameters
----------
obj : any object
path : string
File path
compression : {'infer', 'gzip', 'bz2', 'xz', None}, default 'infer'
a string representing the compression to use in the output file
.. versionadded:: 0.20.0
protocol : int
Int which indicates which protocol should be used by the pickler,
default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
values for this parameter depend on the version of Python. For Python
2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
For Python >= 3.4, 4 is a valid value. A negative value for the
protocol parameter is equivalent to setting its value to
HIGHEST_PROTOCOL.
.. [1] https://docs.python.org/3/library/pickle.html
.. versionadded:: 0.21.0
"""
path = _stringify_path(path)
inferred_compression = _infer_compression(path, compression)
f, fh = _get_handle(path, 'wb',
compression=inferred_compression,
is_text=False)
if protocol < 0:
protocol = pkl.HIGHEST_PROTOCOL
try:
pkl.dump(obj, f, protocol=protocol)
finally:
for _f in fh:
_f.close()
def read_pickle(path, compression='infer'):
"""
Load pickled pandas object (or any other pickled object) from the specified
file path
Warning: Loading pickled data received from untrusted sources can be
unsafe. See: http://docs.python.org/2.7/library/pickle.html
Parameters
----------
path : string
File path
compression : {'infer', 'gzip', 'bz2', 'xz', 'zip', None}, default 'infer'
For on-the-fly decompression of on-disk data. If 'infer', then use
gzip, bz2, xz or zip if path ends in '.gz', '.bz2', '.xz',
or '.zip' respectively, and no decompression otherwise.
Set to None for no decompression.
.. versionadded:: 0.20.0
Returns
-------
unpickled : type of object stored in file
"""
path = _stringify_path(path)
inferred_compression = _infer_compression(path, compression)
def read_wrapper(func):
# wrapper file handle open/close operation
f, fh = _get_handle(path, 'rb',
compression=inferred_compression,
is_text=False)
try:
return func(f)
finally:
for _f in fh:
_f.close()
def try_read(path, encoding=None):
# try with cPickle
# try with current pickle, if we have a Type Error then
# try with the compat pickle to handle subclass changes
# pass encoding only if its not None as py2 doesn't handle
# the param
# cpickle
# GH 6899
try:
return read_wrapper(lambda f: pkl.load(f))
except Exception:
# reg/patched pickle
try:
return read_wrapper(
lambda f: pc.load(f, encoding=encoding, compat=False))
# compat pickle
except:
return read_wrapper(
lambda f: pc.load(f, encoding=encoding, compat=True))
try:
return try_read(path)
except:
if PY3:
return try_read(path, encoding='latin1')
raise
# compat with sparse pickle / unpickle
def _pickle_array(arr):
arr = arr.view(np.ndarray)
buf = BytesIO()
write_array(buf, arr)
return buf.getvalue()
def _unpickle_array(bytes):
arr = read_array(BytesIO(bytes))
# All datetimes should be stored as M8[ns]. When unpickling with
# numpy1.6, it will read these as M8[us]. So this ensures all
# datetime64 types are read as MS[ns]
if is_datetime64_dtype(arr):
arr = arr.view(_NS_DTYPE)
return arr