File tree 1 file changed +3
-3
lines changed
1 file changed +3
-3
lines changed Original file line number Diff line number Diff line change @@ -651,14 +651,14 @@ speakers_specific_properties = (speakers_properties
651
651
speakers_properties.groupby(' Speaker' ).nunique(dropna = False ).eq(1 ).all()])
652
652
.groupby(' Speaker' )
653
653
.apply(lambda speaker_properties : speaker_properties.apply(
654
- lambda speaker_property : speaker_property.unique().squeeze ())))
654
+ lambda speaker_property : speaker_property.unique().item ())))
655
655
656
656
single_speaker_mode = speakers_properties.index.nunique() <= 1
657
657
658
658
def format_speakers_property (speakers_property ):
659
659
nunique_values = speakers_property.nunique(dropna = False )
660
660
if nunique_values == 1 :
661
- return [f ' { speakers_property.name} : { speakers_property.unique().squeeze ()} ' ]
661
+ return [f ' { speakers_property.name} : { speakers_property.unique().item ()} ' ]
662
662
663
663
def format_speakers (speaker_property ):
664
664
return speaker_property.dropna().str.cat(sep = ' , ' )
@@ -1508,7 +1508,7 @@ speakers_slope_b
1508
1508
def speakers_slope_value_at_frequency (frequency_hz ):
1509
1509
return (speakers_slope_regression
1510
1510
.pipe(lsx.pd.applymap_notna, lambda regression_results :
1511
- regression_results.predict({' frequency_hz' : frequency_hz}).squeeze ())
1511
+ regression_results.predict({' frequency_hz' : frequency_hz}).item ())
1512
1512
.pipe(lsx.pd.append_constant_index, frequency_hz, name = ' Frequency [Hz]' ))
1513
1513
1514
1514
conditional_chart(max_sidebyside_speaker_count, lambda : frequency_response_db_chart(
You can’t perform that action at this time.
0 commit comments