forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
397 lines (302 loc) · 12.1 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
"""
Expose public exceptions & warnings
"""
from __future__ import annotations
import ctypes
from pandas._config.config import OptionError # noqa:F401
from pandas._libs.tslibs import ( # noqa:F401
OutOfBoundsDatetime,
OutOfBoundsTimedelta,
)
class IntCastingNaNError(ValueError):
"""
Raised when attempting an astype operation on an array with NaN to an integer
dtype.
"""
pass
class NullFrequencyError(ValueError):
"""
Error raised when a null `freq` attribute is used in an operation
that needs a non-null frequency, particularly `DatetimeIndex.shift`,
`TimedeltaIndex.shift`, `PeriodIndex.shift`.
"""
pass
class PerformanceWarning(Warning):
"""
Warning raised when there is a possible performance impact.
"""
class UnsupportedFunctionCall(ValueError):
"""
Exception raised when attempting to call a numpy function
on a pandas object, but that function is not supported by
the object e.g. ``np.cumsum(groupby_object)``.
"""
class UnsortedIndexError(KeyError):
"""
Error raised when attempting to get a slice of a MultiIndex,
and the index has not been lexsorted. Subclass of `KeyError`.
"""
class ParserError(ValueError):
"""
Exception that is raised by an error encountered in parsing file contents.
This is a generic error raised for errors encountered when functions like
`read_csv` or `read_html` are parsing contents of a file.
See Also
--------
read_csv : Read CSV (comma-separated) file into a DataFrame.
read_html : Read HTML table into a DataFrame.
"""
class DtypeWarning(Warning):
"""
Warning raised when reading different dtypes in a column from a file.
Raised for a dtype incompatibility. This can happen whenever `read_csv`
or `read_table` encounter non-uniform dtypes in a column(s) of a given
CSV file.
See Also
--------
read_csv : Read CSV (comma-separated) file into a DataFrame.
read_table : Read general delimited file into a DataFrame.
Notes
-----
This warning is issued when dealing with larger files because the dtype
checking happens per chunk read.
Despite the warning, the CSV file is read with mixed types in a single
column which will be an object type. See the examples below to better
understand this issue.
Examples
--------
This example creates and reads a large CSV file with a column that contains
`int` and `str`.
>>> df = pd.DataFrame({'a': (['1'] * 100000 + ['X'] * 100000 +
... ['1'] * 100000),
... 'b': ['b'] * 300000}) # doctest: +SKIP
>>> df.to_csv('test.csv', index=False) # doctest: +SKIP
>>> df2 = pd.read_csv('test.csv') # doctest: +SKIP
... # DtypeWarning: Columns (0) have mixed types
Important to notice that ``df2`` will contain both `str` and `int` for the
same input, '1'.
>>> df2.iloc[262140, 0] # doctest: +SKIP
'1'
>>> type(df2.iloc[262140, 0]) # doctest: +SKIP
<class 'str'>
>>> df2.iloc[262150, 0] # doctest: +SKIP
1
>>> type(df2.iloc[262150, 0]) # doctest: +SKIP
<class 'int'>
One way to solve this issue is using the `dtype` parameter in the
`read_csv` and `read_table` functions to explicit the conversion:
>>> df2 = pd.read_csv('test.csv', sep=',', dtype={'a': str}) # doctest: +SKIP
No warning was issued.
"""
class EmptyDataError(ValueError):
"""
Exception that is thrown in `pd.read_csv` (by both the C and
Python engines) when empty data or header is encountered.
"""
class ParserWarning(Warning):
"""
Warning raised when reading a file that doesn't use the default 'c' parser.
Raised by `pd.read_csv` and `pd.read_table` when it is necessary to change
parsers, generally from the default 'c' parser to 'python'.
It happens due to a lack of support or functionality for parsing a
particular attribute of a CSV file with the requested engine.
Currently, 'c' unsupported options include the following parameters:
1. `sep` other than a single character (e.g. regex separators)
2. `skipfooter` higher than 0
3. `sep=None` with `delim_whitespace=False`
The warning can be avoided by adding `engine='python'` as a parameter in
`pd.read_csv` and `pd.read_table` methods.
See Also
--------
pd.read_csv : Read CSV (comma-separated) file into DataFrame.
pd.read_table : Read general delimited file into DataFrame.
Examples
--------
Using a `sep` in `pd.read_csv` other than a single character:
>>> import io
>>> csv = '''a;b;c
... 1;1,8
... 1;2,1'''
>>> df = pd.read_csv(io.StringIO(csv), sep='[;,]') # doctest: +SKIP
... # ParserWarning: Falling back to the 'python' engine...
Adding `engine='python'` to `pd.read_csv` removes the Warning:
>>> df = pd.read_csv(io.StringIO(csv), sep='[;,]', engine='python')
"""
class MergeError(ValueError):
"""
Error raised when problems arise during merging due to problems
with input data. Subclass of `ValueError`.
"""
class AccessorRegistrationWarning(Warning):
"""
Warning for attribute conflicts in accessor registration.
"""
class AbstractMethodError(NotImplementedError):
"""
Raise this error instead of NotImplementedError for abstract methods
while keeping compatibility with Python 2 and Python 3.
"""
def __init__(self, class_instance, methodtype="method") -> None:
types = {"method", "classmethod", "staticmethod", "property"}
if methodtype not in types:
raise ValueError(
f"methodtype must be one of {methodtype}, got {types} instead."
)
self.methodtype = methodtype
self.class_instance = class_instance
def __str__(self) -> str:
if self.methodtype == "classmethod":
name = self.class_instance.__name__
else:
name = type(self.class_instance).__name__
return f"This {self.methodtype} must be defined in the concrete class {name}"
class NumbaUtilError(Exception):
"""
Error raised for unsupported Numba engine routines.
"""
class DuplicateLabelError(ValueError):
"""
Error raised when an operation would introduce duplicate labels.
.. versionadded:: 1.2.0
Examples
--------
>>> s = pd.Series([0, 1, 2], index=['a', 'b', 'c']).set_flags(
... allows_duplicate_labels=False
... )
>>> s.reindex(['a', 'a', 'b'])
Traceback (most recent call last):
...
DuplicateLabelError: Index has duplicates.
positions
label
a [0, 1]
"""
class InvalidIndexError(Exception):
"""
Exception raised when attempting to use an invalid index key.
.. versionadded:: 1.1.0
"""
class DataError(Exception):
"""
Exception raised when trying to perform a ohlc on a non-numnerical column.
Or, it can be raised when trying to apply a function to a non-numerical
column on a rolling window.
"""
class SpecificationError(Exception):
"""
Exception raised in two scenarios. The first way is calling agg on a
Dataframe or Series using a nested renamer (dict-of-dict).
The second way is calling agg on a Dataframe with duplicated functions
names without assigning column name.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2],
... 'B': range(5),
... 'C': range(5)})
>>> df.groupby('A').B.agg({'foo': 'count'}) # doctest: +SKIP
... # SpecificationError: nested renamer is not supported
>>> df.groupby('A').agg({'B': {'foo': ['sum', 'max']}}) # doctest: +SKIP
... # SpecificationError: nested renamer is not supported
>>> df.groupby('A').agg(['min', 'min']) # doctest: +SKIP
... # SpecificationError: nested renamer is not supported
"""
class SettingWithCopyError(ValueError):
"""
Exception is raised when trying to set on a copied slice from a dataframe and
the mode.chained_assignment is set to 'raise.' This can happen unintentionally
when chained indexing.
For more information on eveluation order,
see :ref:`the user guide<indexing.evaluation_order>`.
For more information on view vs. copy,
see :ref:`the user guide<indexing.view_versus_copy>`.
Examples
--------
>>> pd.options.mode.chained_assignment = 'raise'
>>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2]}, columns=['A'])
>>> df.loc[0:3]['A'] = 'a' # doctest: +SKIP
... # SettingWithCopyError: A value is trying to be set on a copy of a...
"""
class SettingWithCopyWarning(Warning):
"""
Warning is raised when trying to set on a copied slice from a dataframe and
the mode.chained_assignment is set to 'warn.' 'Warn' is the default option.
This can happen unintentionally when chained indexing.
For more information on eveluation order,
see :ref:`the user guide<indexing.evaluation_order>`.
For more information on view vs. copy,
see :ref:`the user guide<indexing.view_versus_copy>`.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 1, 1, 2, 2]}, columns=['A'])
>>> df.loc[0:3]['A'] = 'a' # doctest: +SKIP
... # SettingWithCopyWarning: A value is trying to be set on a copy of a...
"""
class NumExprClobberingError(NameError):
"""
Exception is raised when trying to use a built-in numexpr name as a variable name
in a method like query or eval. Eval will throw the error if the engine is set
to 'numexpr'. 'numexpr' is the default engine value for eval if the numexpr package
is installed.
Examples
--------
>>> df = pd.DataFrame({'abs': [1, 1, 1]})
>>> df.query("abs > 2") # doctest: +SKIP
... # NumExprClobberingError: Variables in expression "(abs) > (2)" overlap...
>>> sin, a = 1, 2
>>> pd.eval("sin + a", engine='numexpr') # doctest: +SKIP
... # NumExprClobberingError: Variables in expression "(sin) + (a)" overlap...
"""
class UndefinedVariableError(NameError):
"""
Exception is raised when trying to use an undefined variable name in a method
like query or eval. It will also specific whether the undefined variable is
local or not.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 1, 1]})
>>> df.query("A > x") # doctest: +SKIP
... # UndefinedVariableError: name 'x' is not defined
>>> df.query("A > @y") # doctest: +SKIP
... # UndefinedVariableError: local variable 'y' is not defined
>>> pd.eval('x + 1') # doctest: +SKIP
... # UndefinedVariableError: name 'x' is not defined
"""
def __init__(self, name: str, is_local: bool | None = None) -> None:
base_msg = f"{repr(name)} is not defined"
if is_local:
msg = f"local variable {base_msg}"
else:
msg = f"name {base_msg}"
super().__init__(msg)
class IndexingError(Exception):
"""
Exception is raised when trying to index and there is a mismatch in dimensions.
Examples
--------
>>> df = pd.DataFrame({'A': [1, 1, 1]})
>>> df.loc[..., ..., 'A'] # doctest: +SKIP
... # IndexingError: indexer may only contain one '...' entry
>>> df = pd.DataFrame({'A': [1, 1, 1]})
>>> df.loc[1, ..., ...] # doctest: +SKIP
... # IndexingError: Too many indexers
>>> df[pd.Series([True], dtype=bool)] # doctest: +SKIP
... # IndexingError: Unalignable boolean Series provided as indexer...
>>> s = pd.Series(range(2),
... index = pd.MultiIndex.from_product([["a", "b"], ["c"]]))
>>> s.loc["a", "c", "d"] # doctest: +SKIP
... # IndexingError: Too many indexers
"""
class PyperclipException(RuntimeError):
"""
Exception is raised when trying to use methods like to_clipboard() and
read_clipboard() on an unsupported OS/platform.
"""
class PyperclipWindowsException(PyperclipException):
"""
Exception is raised when pandas is unable to get access to the clipboard handle
due to some other window process is accessing it.
"""
def __init__(self, message: str) -> None:
# attr only exists on Windows, so typing fails on other platforms
message += f" ({ctypes.WinError()})" # type: ignore[attr-defined]
super().__init__(message)