In short, given the constraints of floating-point arithmetic and the subtleties of signed zeros, infinities, NaNs, and their interaction, crafting a specification which always yields intuitive results and satisfies all use cases involving complex numbers is not possible. Instead, this specification attempts to follow precedent (e.g., C99, Python, Julia, NumPy, and elsewhere), while also minimizing surprise. The result is an imperfect balance in which certain APIs may appear to embrace the one-infinity model found in C/C++ for algebraic operations involving complex numbers (e.g., considering :math:`\infty + \operatorname{NaN}\ j` to be infinite, irrespective of the imaginary component's value, including NaN), while other APIs may rely on the complex plane with its multiplicity of infinities (e.g., in transcendental functions). Accordingly, consumers of this specification should expect that certain results involving complex numbers for one operation may not be wholly consistent with results involving complex numbers for another operation.
0 commit comments