forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtslib.pyx
852 lines (724 loc) · 28.3 KB
/
tslib.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
import warnings
cimport cython
from cpython.datetime cimport (
PyDate_Check,
PyDateTime_Check,
datetime,
import_datetime,
tzinfo,
)
# import datetime C API
import_datetime()
cimport numpy as cnp
from numpy cimport (
float64_t,
int64_t,
ndarray,
)
import numpy as np
cnp.import_array()
import pytz
from pandas._libs.tslibs.np_datetime cimport (
NPY_DATETIMEUNIT,
NPY_FR_ns,
check_dts_bounds,
dtstruct_to_dt64,
get_datetime64_value,
npy_datetimestruct,
pandas_datetime_to_datetimestruct,
pydate_to_dt64,
pydatetime_to_dt64,
string_to_dts,
)
from pandas._libs.util cimport (
is_datetime64_object,
is_float_object,
is_integer_object,
)
from pandas._libs.tslibs.np_datetime import OutOfBoundsDatetime
from pandas._libs.tslibs.parsing import parse_datetime_string
from pandas._libs.tslibs.conversion cimport (
_TSObject,
cast_from_unit,
convert_datetime_to_tsobject,
get_datetime64_nanos,
precision_from_unit,
)
from pandas._libs.tslibs.nattype cimport (
NPY_NAT,
c_NaT as NaT,
c_nat_strings as nat_strings,
)
from pandas._libs.tslibs.timestamps cimport _Timestamp
from pandas._libs.tslibs.timezones cimport tz_compare
from pandas._libs.tslibs import (
Resolution,
get_resolution,
)
from pandas._libs.tslibs.timestamps import Timestamp
# Note: this is the only non-tslibs intra-pandas dependency here
from pandas._libs.missing cimport checknull_with_nat_and_na
from pandas._libs.tslibs.tzconversion cimport tz_localize_to_utc_single
def _test_parse_iso8601(ts: str):
"""
TESTING ONLY: Parse string into Timestamp using iso8601 parser. Used
only for testing, actual construction uses `convert_str_to_tsobject`
"""
cdef:
_TSObject obj
int out_local = 0, out_tzoffset = 0
NPY_DATETIMEUNIT out_bestunit
obj = _TSObject()
if ts == 'now':
return Timestamp.utcnow()
elif ts == 'today':
return Timestamp.now().normalize()
string_to_dts(ts, &obj.dts, &out_bestunit, &out_local, &out_tzoffset, True)
obj.value = dtstruct_to_dt64(&obj.dts)
check_dts_bounds(&obj.dts)
if out_local == 1:
obj.tzinfo = pytz.FixedOffset(out_tzoffset)
obj.value = tz_localize_to_utc_single(obj.value, obj.tzinfo)
return Timestamp(obj.value, tz=obj.tzinfo)
else:
return Timestamp(obj.value)
@cython.wraparound(False)
@cython.boundscheck(False)
def format_array_from_datetime(
ndarray values,
tzinfo tz=None,
str format=None,
object na_rep=None,
NPY_DATETIMEUNIT reso=NPY_FR_ns,
) -> np.ndarray:
"""
return a np object array of the string formatted values
Parameters
----------
values : a 1-d i8 array
tz : tzinfo or None, default None
format : str or None, default None
a strftime capable string
na_rep : optional, default is None
a nat format
reso : NPY_DATETIMEUNIT, default NPY_FR_ns
Returns
-------
np.ndarray[object]
"""
cdef:
int64_t val, ns, N = values.size
bint show_ms = False, show_us = False, show_ns = False
bint basic_format = False, basic_format_day = False
_Timestamp ts
object res
npy_datetimestruct dts
# Note that `result` (and thus `result_flat`) is C-order and
# `it` iterates C-order as well, so the iteration matches
# See discussion at
# github.com/pandas-dev/pandas/pull/46886#discussion_r860261305
ndarray result = cnp.PyArray_EMPTY(values.ndim, values.shape, cnp.NPY_OBJECT, 0)
object[::1] res_flat = result.ravel() # should NOT be a copy
cnp.flatiter it = cnp.PyArray_IterNew(values)
if na_rep is None:
na_rep = 'NaT'
if tz is None:
# if we don't have a format nor tz, then choose
# a format based on precision
basic_format = format is None
if basic_format:
reso_obj = get_resolution(values, tz=tz, reso=reso)
show_ns = reso_obj == Resolution.RESO_NS
show_us = reso_obj == Resolution.RESO_US
show_ms = reso_obj == Resolution.RESO_MS
elif format == "%Y-%m-%d %H:%M:%S":
# Same format as default, but with hardcoded precision (s)
basic_format = True
show_ns = show_us = show_ms = False
elif format == "%Y-%m-%d %H:%M:%S.%f":
# Same format as default, but with hardcoded precision (us)
basic_format = show_us = True
show_ns = show_ms = False
elif format == "%Y-%m-%d":
# Default format for dates
basic_format_day = True
assert not (basic_format_day and basic_format)
for i in range(N):
# Analogous to: utc_val = values[i]
val = (<int64_t*>cnp.PyArray_ITER_DATA(it))[0]
if val == NPY_NAT:
res = na_rep
elif basic_format_day:
pandas_datetime_to_datetimestruct(val, reso, &dts)
res = f'{dts.year}-{dts.month:02d}-{dts.day:02d}'
elif basic_format:
pandas_datetime_to_datetimestruct(val, reso, &dts)
res = (f'{dts.year}-{dts.month:02d}-{dts.day:02d} '
f'{dts.hour:02d}:{dts.min:02d}:{dts.sec:02d}')
if show_ns:
ns = dts.ps // 1000
res += f'.{ns + dts.us * 1000:09d}'
elif show_us:
res += f'.{dts.us:06d}'
elif show_ms:
res += f'.{dts.us // 1000:03d}'
else:
ts = Timestamp._from_value_and_reso(val, reso=reso, tz=tz)
if format is None:
# Use datetime.str, that returns ts.isoformat(sep=' ')
res = str(ts)
else:
# invalid format string
# requires dates > 1900
try:
# Note: dispatches to pydatetime
res = ts.strftime(format)
except ValueError:
# Use datetime.str, that returns ts.isoformat(sep=' ')
res = str(ts)
# Note: we can index result directly instead of using PyArray_MultiIter_DATA
# like we do for the other functions because result is known C-contiguous
# and is the first argument to PyArray_MultiIterNew2. The usual pattern
# does not seem to work with object dtype.
# See discussion at
# github.com/pandas-dev/pandas/pull/46886#discussion_r860261305
res_flat[i] = res
cnp.PyArray_ITER_NEXT(it)
return result
def array_with_unit_to_datetime(
ndarray values,
str unit,
str errors="coerce"
):
"""
Convert the ndarray to datetime according to the time unit.
This function converts an array of objects into a numpy array of
datetime64[ns]. It returns the converted array
and also returns the timezone offset
if errors:
- raise: return converted values or raise OutOfBoundsDatetime
if out of range on the conversion or
ValueError for other conversions (e.g. a string)
- ignore: return non-convertible values as the same unit
- coerce: NaT for non-convertibles
Parameters
----------
values : ndarray
Date-like objects to convert.
unit : str
Time unit to use during conversion.
errors : str, default 'raise'
Error behavior when parsing.
Returns
-------
result : ndarray of m8 values
tz : parsed timezone offset or None
"""
cdef:
Py_ssize_t i, j, n=len(values)
int64_t mult
int prec = 0
ndarray[float64_t] fvalues
bint is_ignore = errors=='ignore'
bint is_coerce = errors=='coerce'
bint is_raise = errors=='raise'
bint need_to_iterate = True
ndarray[int64_t] iresult
ndarray[object] oresult
ndarray mask
object tz = None
assert is_ignore or is_coerce or is_raise
if unit == "ns":
if issubclass(values.dtype.type, (np.integer, np.float_)):
result = values.astype("M8[ns]", copy=False)
else:
result, tz = array_to_datetime(
values.astype(object, copy=False),
errors=errors,
)
return result, tz
mult, _ = precision_from_unit(unit)
if is_raise:
# try a quick conversion to i8/f8
# if we have nulls that are not type-compat
# then need to iterate
if values.dtype.kind in ["i", "f", "u"]:
iresult = values.astype("i8", copy=False)
# fill missing values by comparing to NPY_NAT
mask = iresult == NPY_NAT
iresult[mask] = 0
fvalues = iresult.astype("f8") * mult
need_to_iterate = False
if not need_to_iterate:
# check the bounds
if (fvalues < Timestamp.min.value).any() or (
(fvalues > Timestamp.max.value).any()
):
raise OutOfBoundsDatetime(f"cannot convert input with unit '{unit}'")
if values.dtype.kind in ["i", "u"]:
result = (iresult * mult).astype("M8[ns]")
elif values.dtype.kind == "f":
fresult = (values * mult).astype("f8")
fresult[mask] = 0
if prec:
fresult = round(fresult, prec)
result = fresult.astype("M8[ns]", copy=False)
iresult = result.view("i8")
iresult[mask] = NPY_NAT
return result, tz
result = np.empty(n, dtype='M8[ns]')
iresult = result.view('i8')
try:
for i in range(n):
val = values[i]
if checknull_with_nat_and_na(val):
iresult[i] = NPY_NAT
elif is_integer_object(val) or is_float_object(val):
if val != val or val == NPY_NAT:
iresult[i] = NPY_NAT
else:
try:
iresult[i] = cast_from_unit(val, unit)
except OverflowError:
if is_raise:
raise OutOfBoundsDatetime(
f"cannot convert input {val} with the unit '{unit}'"
)
elif is_ignore:
raise AssertionError
iresult[i] = NPY_NAT
elif isinstance(val, str):
if len(val) == 0 or val in nat_strings:
iresult[i] = NPY_NAT
else:
try:
iresult[i] = cast_from_unit(float(val), unit)
except ValueError:
if is_raise:
raise ValueError(
f"non convertible value {val} with the unit '{unit}'"
)
elif is_ignore:
raise AssertionError
iresult[i] = NPY_NAT
except OverflowError:
if is_raise:
raise OutOfBoundsDatetime(
f"cannot convert input {val} with the unit '{unit}'"
)
elif is_ignore:
raise AssertionError
iresult[i] = NPY_NAT
else:
if is_raise:
raise ValueError(
f"unit='{unit}' not valid with non-numerical val='{val}'"
)
if is_ignore:
raise AssertionError
iresult[i] = NPY_NAT
return result, tz
except AssertionError:
pass
# we have hit an exception
# and are in ignore mode
# redo as object
oresult = cnp.PyArray_EMPTY(values.ndim, values.shape, cnp.NPY_OBJECT, 0)
for i in range(n):
val = values[i]
if checknull_with_nat_and_na(val):
oresult[i] = <object>NaT
elif is_integer_object(val) or is_float_object(val):
if val != val or val == NPY_NAT:
oresult[i] = <object>NaT
else:
try:
oresult[i] = Timestamp(cast_from_unit(val, unit))
except OverflowError:
oresult[i] = val
elif isinstance(val, str):
if len(val) == 0 or val in nat_strings:
oresult[i] = <object>NaT
else:
oresult[i] = val
return oresult, tz
@cython.wraparound(False)
@cython.boundscheck(False)
cpdef array_to_datetime(
ndarray[object] values,
str errors='raise',
bint dayfirst=False,
bint yearfirst=False,
bint utc=False,
bint require_iso8601=False,
bint allow_mixed=False,
):
"""
Converts a 1D array of date-like values to a numpy array of either:
1) datetime64[ns] data
2) datetime.datetime objects, if OutOfBoundsDatetime or TypeError
is encountered
Also returns a pytz.FixedOffset if an array of strings with the same
timezone offset is passed and utc=True is not passed. Otherwise, None
is returned
Handles datetime.date, datetime.datetime, np.datetime64 objects, numeric,
strings
Parameters
----------
values : ndarray of object
date-like objects to convert
errors : str, default 'raise'
error behavior when parsing
dayfirst : bool, default False
dayfirst parsing behavior when encountering datetime strings
yearfirst : bool, default False
yearfirst parsing behavior when encountering datetime strings
utc : bool, default False
indicator whether the dates should be UTC
require_iso8601 : bool, default False
indicator whether the datetime string should be iso8601
allow_mixed : bool, default False
Whether to allow mixed datetimes and integers.
Returns
-------
np.ndarray
May be datetime64[ns] or object dtype
tzinfo or None
"""
cdef:
Py_ssize_t i, n = len(values)
object val, tz
ndarray[int64_t] iresult
ndarray[object] oresult
npy_datetimestruct dts
NPY_DATETIMEUNIT out_bestunit
bint utc_convert = bool(utc)
bint seen_integer = False
bint seen_string = False
bint seen_datetime = False
bint seen_datetime_offset = False
bint is_raise = errors=='raise'
bint is_ignore = errors=='ignore'
bint is_coerce = errors=='coerce'
bint is_same_offsets
_TSObject _ts
int64_t value
int out_local = 0, out_tzoffset = 0
float offset_seconds, tz_offset
set out_tzoffset_vals = set()
bint string_to_dts_failed
datetime py_dt
tzinfo tz_out = None
bint found_tz = False, found_naive = False
# specify error conditions
assert is_raise or is_ignore or is_coerce
result = np.empty(n, dtype='M8[ns]')
iresult = result.view('i8')
try:
for i in range(n):
val = values[i]
try:
if checknull_with_nat_and_na(val):
iresult[i] = NPY_NAT
elif PyDateTime_Check(val):
seen_datetime = True
if val.tzinfo is not None:
found_tz = True
if utc_convert:
_ts = convert_datetime_to_tsobject(val, None)
iresult[i] = _ts.value
elif found_naive:
raise ValueError('Tz-aware datetime.datetime '
'cannot be converted to '
'datetime64 unless utc=True')
elif tz_out is not None and not tz_compare(tz_out, val.tzinfo):
raise ValueError('Tz-aware datetime.datetime '
'cannot be converted to '
'datetime64 unless utc=True')
else:
found_tz = True
tz_out = val.tzinfo
_ts = convert_datetime_to_tsobject(val, None)
iresult[i] = _ts.value
else:
found_naive = True
if found_tz:
raise ValueError('Cannot mix tz-aware with '
'tz-naive values')
if isinstance(val, _Timestamp):
iresult[i] = val.value
else:
iresult[i] = pydatetime_to_dt64(val, &dts)
check_dts_bounds(&dts)
elif PyDate_Check(val):
seen_datetime = True
iresult[i] = pydate_to_dt64(val, &dts)
check_dts_bounds(&dts)
elif is_datetime64_object(val):
seen_datetime = True
iresult[i] = get_datetime64_nanos(val)
elif is_integer_object(val) or is_float_object(val):
# these must be ns unit by-definition
seen_integer = True
if val != val or val == NPY_NAT:
iresult[i] = NPY_NAT
elif is_raise or is_ignore:
iresult[i] = val
else:
# coerce
# we now need to parse this as if unit='ns'
# we can ONLY accept integers at this point
# if we have previously (or in future accept
# datetimes/strings, then we must coerce)
try:
iresult[i] = cast_from_unit(val, 'ns')
except OverflowError:
iresult[i] = NPY_NAT
elif isinstance(val, str):
# string
seen_string = True
if type(val) is not str:
# GH#32264 np.str_ object
val = str(val)
if len(val) == 0 or val in nat_strings:
iresult[i] = NPY_NAT
continue
string_to_dts_failed = string_to_dts(
val, &dts, &out_bestunit, &out_local,
&out_tzoffset, False
)
if string_to_dts_failed:
# An error at this point is a _parsing_ error
# specifically _not_ OutOfBoundsDatetime
if _parse_today_now(val, &iresult[i], utc):
continue
elif require_iso8601:
# if requiring iso8601 strings, skip trying
# other formats
if is_coerce:
iresult[i] = NPY_NAT
continue
elif is_raise:
raise ValueError(
f"time data {val} doesn't match format specified"
)
return values, tz_out
try:
py_dt = parse_datetime_string(val,
dayfirst=dayfirst,
yearfirst=yearfirst)
# If the dateutil parser returned tzinfo, capture it
# to check if all arguments have the same tzinfo
tz = py_dt.utcoffset()
except (ValueError, OverflowError):
if is_coerce:
iresult[i] = NPY_NAT
continue
raise TypeError("invalid string coercion to datetime")
if tz is not None:
seen_datetime_offset = True
# dateutil timezone objects cannot be hashed, so
# store the UTC offsets in seconds instead
out_tzoffset_vals.add(tz.total_seconds())
else:
# Add a marker for naive string, to track if we are
# parsing mixed naive and aware strings
out_tzoffset_vals.add('naive')
_ts = convert_datetime_to_tsobject(py_dt, None)
iresult[i] = _ts.value
if not string_to_dts_failed:
# No error reported by string_to_dts, pick back up
# where we left off
value = dtstruct_to_dt64(&dts)
if out_local == 1:
seen_datetime_offset = True
# Store the out_tzoffset in seconds
# since we store the total_seconds of
# dateutil.tz.tzoffset objects
out_tzoffset_vals.add(out_tzoffset * 60.)
tz = pytz.FixedOffset(out_tzoffset)
value = tz_localize_to_utc_single(value, tz)
out_local = 0
out_tzoffset = 0
else:
# Add a marker for naive string, to track if we are
# parsing mixed naive and aware strings
out_tzoffset_vals.add('naive')
iresult[i] = value
check_dts_bounds(&dts)
else:
if is_coerce:
iresult[i] = NPY_NAT
else:
raise TypeError(f"{type(val)} is not convertible to datetime")
except OutOfBoundsDatetime:
if is_coerce:
iresult[i] = NPY_NAT
continue
elif require_iso8601 and isinstance(val, str):
# GH#19382 for just-barely-OutOfBounds falling back to
# dateutil parser will return incorrect result because
# it will ignore nanoseconds
if is_raise:
# Still raise OutOfBoundsDatetime,
# as error message is informative.
raise OutOfBoundsDatetime(f"Cannot convert \"{val}\" at position {i} to datetime")
assert is_ignore
return values, tz_out
raise OutOfBoundsDatetime(f"Cannot convert \"{val}\" at position {i} to datetime")
except OutOfBoundsDatetime:
if is_raise:
raise
return ignore_errors_out_of_bounds_fallback(values), tz_out
except TypeError:
return _array_to_datetime_object(values, errors, dayfirst, yearfirst)
if seen_datetime and seen_integer:
# we have mixed datetimes & integers
if is_coerce:
# coerce all of the integers/floats to NaT, preserve
# the datetimes and other convertibles
for i in range(n):
val = values[i]
if is_integer_object(val) or is_float_object(val):
result[i] = NPY_NAT
elif allow_mixed:
pass
elif is_raise:
raise ValueError("mixed datetimes and integers in passed array")
else:
return _array_to_datetime_object(values, errors, dayfirst, yearfirst)
if seen_datetime_offset and not utc_convert:
# GH#17697
# 1) If all the offsets are equal, return one offset for
# the parsed dates to (maybe) pass to DatetimeIndex
# 2) If the offsets are different, then force the parsing down the
# object path where an array of datetimes
# (with individual dateutil.tzoffsets) are returned
is_same_offsets = len(out_tzoffset_vals) == 1
if not is_same_offsets:
return _array_to_datetime_object(values, errors, dayfirst, yearfirst)
else:
tz_offset = out_tzoffset_vals.pop()
tz_out = pytz.FixedOffset(tz_offset / 60.)
return result, tz_out
@cython.wraparound(False)
@cython.boundscheck(False)
cdef ndarray[object] ignore_errors_out_of_bounds_fallback(ndarray[object] values):
"""
Fallback for array_to_datetime if an OutOfBoundsDatetime is raised
and errors == "ignore"
Parameters
----------
values : ndarray[object]
Returns
-------
ndarray[object]
"""
cdef:
Py_ssize_t i, n = len(values)
object val
oresult = cnp.PyArray_EMPTY(values.ndim, values.shape, cnp.NPY_OBJECT, 0)
for i in range(n):
val = values[i]
# set as nan except if its a NaT
if checknull_with_nat_and_na(val):
if isinstance(val, float):
oresult[i] = np.nan
else:
oresult[i] = NaT
elif is_datetime64_object(val):
if get_datetime64_value(val) == NPY_NAT:
oresult[i] = NaT
else:
oresult[i] = val.item()
else:
oresult[i] = val
return oresult
@cython.wraparound(False)
@cython.boundscheck(False)
cdef _array_to_datetime_object(
ndarray[object] values,
str errors,
bint dayfirst=False,
bint yearfirst=False,
):
"""
Fall back function for array_to_datetime
Attempts to parse datetime strings with dateutil to return an array
of datetime objects
Parameters
----------
values : ndarray[object]
date-like objects to convert
errors : str
error behavior when parsing
dayfirst : bool, default False
dayfirst parsing behavior when encountering datetime strings
yearfirst : bool, default False
yearfirst parsing behavior when encountering datetime strings
Returns
-------
np.ndarray[object]
Literal[None]
"""
cdef:
Py_ssize_t i, n = len(values)
object val
bint is_ignore = errors == 'ignore'
bint is_coerce = errors == 'coerce'
bint is_raise = errors == 'raise'
ndarray[object] oresult
npy_datetimestruct dts
assert is_raise or is_ignore or is_coerce
oresult = cnp.PyArray_EMPTY(values.ndim, values.shape, cnp.NPY_OBJECT, 0)
# We return an object array and only attempt to parse:
# 1) NaT or NaT-like values
# 2) datetime strings, which we return as datetime.datetime
for i in range(n):
val = values[i]
if checknull_with_nat_and_na(val) or PyDateTime_Check(val):
# GH 25978. No need to parse NaT-like or datetime-like vals
oresult[i] = val
elif isinstance(val, str):
if type(val) is not str:
# GH#32264 np.str_ objects
val = str(val)
if len(val) == 0 or val in nat_strings:
oresult[i] = 'NaT'
continue
try:
oresult[i] = parse_datetime_string(val, dayfirst=dayfirst,
yearfirst=yearfirst)
pydatetime_to_dt64(oresult[i], &dts)
check_dts_bounds(&dts)
except (ValueError, OverflowError):
if is_coerce:
oresult[i] = <object>NaT
continue
if is_raise:
raise
return values, None
else:
if is_raise:
raise
return values, None
return oresult, None
cdef inline bint _parse_today_now(str val, int64_t* iresult, bint utc):
# We delay this check for as long as possible
# because it catches relatively rare cases
if val == "now":
iresult[0] = Timestamp.utcnow().value
if not utc:
# GH#18705 make sure to_datetime("now") matches Timestamp("now")
warnings.warn(
"The parsing of 'now' in pd.to_datetime without `utc=True` is "
"deprecated. In a future version, this will match Timestamp('now') "
"and Timestamp.now()",
FutureWarning,
stacklevel=1,
)
return True
elif val == "today":
iresult[0] = Timestamp.today().value
return True
return False