|
| 1 | +//! VecCache maintains a mapping from K -> (V, I) pairing. K and I must be roughly u32-sized, and V |
| 2 | +//! must be Copy. |
| 3 | +//! |
| 4 | +//! VecCache supports efficient concurrent put/get across the key space, with write-once semantics |
| 5 | +//! (i.e., a given key can only be put once). Subsequent puts will panic. |
| 6 | +//! |
| 7 | +//! This is currently used for query caching. |
| 8 | +
|
| 9 | +use std::fmt::Debug; |
| 10 | +use std::marker::PhantomData; |
| 11 | +use std::sync::atomic::{AtomicPtr, AtomicU32, AtomicUsize, Ordering}; |
| 12 | + |
| 13 | +use rustc_index::Idx; |
| 14 | + |
| 15 | +struct Slot<V> { |
| 16 | + // We never construct &Slot<V> so it's fine for this to not be in an UnsafeCell. |
| 17 | + value: V, |
| 18 | + // This is both an index and a once-lock. |
| 19 | + // |
| 20 | + // 0: not yet initialized. |
| 21 | + // 1: lock held, initializing. |
| 22 | + // 2..u32::MAX - 2: initialized. |
| 23 | + index_and_lock: AtomicU32, |
| 24 | +} |
| 25 | + |
| 26 | +/// This uniquely identifies a single `Slot<V>` entry in the buckets map, and provides accessors for |
| 27 | +/// either getting the value or putting a value. |
| 28 | +#[derive(Copy, Clone, Debug)] |
| 29 | +struct SlotIndex { |
| 30 | + // the index of the bucket in VecCache (0 to 20) |
| 31 | + bucket_idx: usize, |
| 32 | + // number of entries in that bucket |
| 33 | + entries: usize, |
| 34 | + // the index of the slot within the bucket |
| 35 | + index_in_bucket: usize, |
| 36 | +} |
| 37 | + |
| 38 | +// This makes sure the counts are consistent with what we allocate, precomputing each bucket a |
| 39 | +// compile-time. Visiting all powers of two is enough to hit all the buckets. |
| 40 | +// |
| 41 | +// We confirm counts are accurate in the slot_index_exhaustive test. |
| 42 | +const ENTRIES_BY_BUCKET: [usize; 21] = { |
| 43 | + let mut entries = [0; 21]; |
| 44 | + let mut key = 0; |
| 45 | + loop { |
| 46 | + let si = SlotIndex::from_index(key); |
| 47 | + entries[si.bucket_idx] = si.entries; |
| 48 | + if key == 0 { |
| 49 | + key = 1; |
| 50 | + } else if key == (1 << 31) { |
| 51 | + break; |
| 52 | + } else { |
| 53 | + key <<= 1; |
| 54 | + } |
| 55 | + } |
| 56 | + entries |
| 57 | +}; |
| 58 | + |
| 59 | +impl SlotIndex { |
| 60 | + // This unpacks a flat u32 index into identifying which bucket it belongs to and the offset |
| 61 | + // within that bucket. As noted in the VecCache docs, buckets double in size with each index. |
| 62 | + // Typically that would mean 31 buckets (2^0 + 2^1 ... + 2^31 = u32::MAX - 1), but to reduce |
| 63 | + // the size of the VecCache struct and avoid uselessly small allocations, we instead have the |
| 64 | + // first bucket have 2**12 entries. To simplify the math, the second bucket also 2**12 entries, |
| 65 | + // and buckets double from there. |
| 66 | + // |
| 67 | + // We assert that [0, 2**32 - 1] uniquely map through this function to individual, consecutive |
| 68 | + // slots (see `slot_index_exhaustive` in tests). |
| 69 | + #[inline] |
| 70 | + const fn from_index(idx: u32) -> Self { |
| 71 | + let mut bucket = match idx.checked_ilog2() { |
| 72 | + Some(x) => x as usize, |
| 73 | + None => 0, |
| 74 | + }; |
| 75 | + let entries; |
| 76 | + let running_sum; |
| 77 | + if bucket <= 11 { |
| 78 | + entries = 1 << 12; |
| 79 | + running_sum = 0; |
| 80 | + bucket = 0; |
| 81 | + } else { |
| 82 | + entries = 1 << bucket; |
| 83 | + running_sum = entries; |
| 84 | + bucket = bucket - 11; |
| 85 | + } |
| 86 | + SlotIndex { bucket_idx: bucket, entries, index_in_bucket: idx as usize - running_sum } |
| 87 | + } |
| 88 | + |
| 89 | + // SAFETY: Buckets must be managed solely by functions here (i.e., get/put on SlotIndex) and |
| 90 | + // `self` comes from SlotIndex::from_index |
| 91 | + #[inline] |
| 92 | + unsafe fn get<V: Copy>(&self, buckets: &[AtomicPtr<Slot<V>>; 21]) -> Option<(V, u32)> { |
| 93 | + // SAFETY: `bucket_idx` is ilog2(u32).saturating_sub(11), which is at most 21, i.e., |
| 94 | + // in-bounds of buckets. See `from_index` for computation. |
| 95 | + let bucket = unsafe { buckets.get_unchecked(self.bucket_idx) }; |
| 96 | + let ptr = bucket.load(Ordering::Acquire); |
| 97 | + // Bucket is not yet initialized: then we obviously won't find this entry in that bucket. |
| 98 | + if ptr.is_null() { |
| 99 | + return None; |
| 100 | + } |
| 101 | + assert!(self.index_in_bucket < self.entries); |
| 102 | + // SAFETY: `bucket` was allocated (so <= isize in total bytes) to hold `entries`, so this |
| 103 | + // must be inbounds. |
| 104 | + let slot = unsafe { ptr.add(self.index_in_bucket) }; |
| 105 | + |
| 106 | + // SAFETY: initialized bucket has zeroed all memory within the bucket, so we are valid for |
| 107 | + // AtomicU32 access. |
| 108 | + let index_and_lock = unsafe { &(*slot).index_and_lock }; |
| 109 | + let current = index_and_lock.load(Ordering::Acquire); |
| 110 | + let index = match current { |
| 111 | + 0 => return None, |
| 112 | + // Treat "initializing" as actually just not initialized at all. |
| 113 | + // The only reason this is a separate state is that `complete` calls could race and |
| 114 | + // we can't allow that, but from load perspective there's no difference. |
| 115 | + 1 => return None, |
| 116 | + _ => current - 2, |
| 117 | + }; |
| 118 | + |
| 119 | + // SAFETY: |
| 120 | + // * slot is a valid pointer (buckets are always valid for the index we get). |
| 121 | + // * value is initialized since we saw a >= 2 index above. |
| 122 | + // * `V: Copy`, so safe to read. |
| 123 | + let value = unsafe { (*slot).value }; |
| 124 | + Some((value, index)) |
| 125 | + } |
| 126 | + |
| 127 | + fn bucket_ptr<V>(&self, bucket: &AtomicPtr<Slot<V>>) -> *mut Slot<V> { |
| 128 | + let ptr = bucket.load(Ordering::Acquire); |
| 129 | + if ptr.is_null() { self.initialize_bucket(bucket) } else { ptr } |
| 130 | + } |
| 131 | + |
| 132 | + #[cold] |
| 133 | + fn initialize_bucket<V>(&self, bucket: &AtomicPtr<Slot<V>>) -> *mut Slot<V> { |
| 134 | + static LOCK: std::sync::Mutex<()> = std::sync::Mutex::new(()); |
| 135 | + |
| 136 | + // If we are initializing the bucket, then acquire a global lock. |
| 137 | + // |
| 138 | + // This path is quite cold, so it's cheap to use a global lock. This ensures that we never |
| 139 | + // have multiple allocations for the same bucket. |
| 140 | + let _allocator_guard = LOCK.lock().unwrap_or_else(|e| e.into_inner()); |
| 141 | + |
| 142 | + let ptr = bucket.load(Ordering::Acquire); |
| 143 | + |
| 144 | + // OK, now under the allocator lock, if we're still null then it's definitely us that will |
| 145 | + // initialize this bucket. |
| 146 | + if ptr.is_null() { |
| 147 | + let bucket_layout = |
| 148 | + std::alloc::Layout::array::<Slot<V>>(self.entries as usize).unwrap(); |
| 149 | + // This is more of a sanity check -- this code is very cold, so it's safe to pay a |
| 150 | + // little extra cost here. |
| 151 | + assert!(bucket_layout.size() > 0); |
| 152 | + // SAFETY: Just checked that size is non-zero. |
| 153 | + let allocated = unsafe { std::alloc::alloc_zeroed(bucket_layout).cast::<Slot<V>>() }; |
| 154 | + if allocated.is_null() { |
| 155 | + std::alloc::handle_alloc_error(bucket_layout); |
| 156 | + } |
| 157 | + bucket.store(allocated, Ordering::Release); |
| 158 | + allocated |
| 159 | + } else { |
| 160 | + // Otherwise some other thread initialized this bucket after we took the lock. In that |
| 161 | + // case, just return early. |
| 162 | + ptr |
| 163 | + } |
| 164 | + } |
| 165 | + |
| 166 | + /// Returns true if this successfully put into the map. |
| 167 | + #[inline] |
| 168 | + fn put<V>(&self, buckets: &[AtomicPtr<Slot<V>>; 21], value: V, extra: u32) -> bool { |
| 169 | + // SAFETY: `bucket_idx` is ilog2(u32).saturating_sub(11), which is at most 21, i.e., |
| 170 | + // in-bounds of buckets. |
| 171 | + let bucket = unsafe { buckets.get_unchecked(self.bucket_idx) }; |
| 172 | + let ptr = self.bucket_ptr(bucket); |
| 173 | + |
| 174 | + assert!(self.index_in_bucket < self.entries); |
| 175 | + // SAFETY: `bucket` was allocated (so <= isize in total bytes) to hold `entries`, so this |
| 176 | + // must be inbounds. |
| 177 | + let slot = unsafe { ptr.add(self.index_in_bucket) }; |
| 178 | + |
| 179 | + // SAFETY: initialized bucket has zeroed all memory within the bucket, so we are valid for |
| 180 | + // AtomicU32 access. |
| 181 | + let index_and_lock = unsafe { &(*slot).index_and_lock }; |
| 182 | + match index_and_lock.compare_exchange(0, 1, Ordering::AcqRel, Ordering::Acquire) { |
| 183 | + Ok(_) => { |
| 184 | + // We have acquired the initialization lock. It is our job to write `value` and |
| 185 | + // then set the lock to the real index. |
| 186 | + |
| 187 | + unsafe { |
| 188 | + (&raw mut (*slot).value).write(value); |
| 189 | + } |
| 190 | + |
| 191 | + index_and_lock.store(extra.checked_add(2).unwrap(), Ordering::Release); |
| 192 | + |
| 193 | + true |
| 194 | + } |
| 195 | + |
| 196 | + // Treat "initializing" as the caller's fault. Callers are responsible for ensuring that |
| 197 | + // there are no races on initialization. In the compiler's current usage for query |
| 198 | + // caches, that's the "active query map" which ensures each query actually runs once |
| 199 | + // (even if concurrently started). |
| 200 | + Err(1) => panic!("caller raced calls to put()"), |
| 201 | + |
| 202 | + // This slot was already populated. Also ignore, currently this is the same as |
| 203 | + // "initializing". |
| 204 | + Err(_) => false, |
| 205 | + } |
| 206 | + } |
| 207 | +} |
| 208 | + |
| 209 | +pub struct VecCache<K: Idx, V, I> { |
| 210 | + // Entries per bucket: |
| 211 | + // Bucket 0: 4096 2^12 |
| 212 | + // Bucket 1: 4096 2^12 |
| 213 | + // Bucket 2: 8192 |
| 214 | + // Bucket 3: 16384 |
| 215 | + // ... |
| 216 | + // Bucket 19: 1073741824 |
| 217 | + // Bucket 20: 2147483648 |
| 218 | + // The total number of entries if all buckets are initialized is u32::MAX-1. |
| 219 | + buckets: [AtomicPtr<Slot<V>>; 21], |
| 220 | + |
| 221 | + // In the compiler's current usage these are only *read* during incremental and self-profiling. |
| 222 | + // They are an optimization over iterating the full buckets array. |
| 223 | + present: [AtomicPtr<Slot<()>>; 21], |
| 224 | + len: AtomicUsize, |
| 225 | + |
| 226 | + key: PhantomData<(K, I)>, |
| 227 | +} |
| 228 | + |
| 229 | +impl<K: Idx, V, I> Default for VecCache<K, V, I> { |
| 230 | + fn default() -> Self { |
| 231 | + VecCache { |
| 232 | + buckets: Default::default(), |
| 233 | + key: PhantomData, |
| 234 | + len: Default::default(), |
| 235 | + present: Default::default(), |
| 236 | + } |
| 237 | + } |
| 238 | +} |
| 239 | + |
| 240 | +// SAFETY: No access to `V` is made. |
| 241 | +unsafe impl<K: Idx, #[may_dangle] V, I> Drop for VecCache<K, V, I> { |
| 242 | + fn drop(&mut self) { |
| 243 | + // We have unique ownership, so no locks etc. are needed. Since `K` and `V` are both `Copy`, |
| 244 | + // we are also guaranteed to just need to deallocate any large arrays (not iterate over |
| 245 | + // contents). |
| 246 | + // |
| 247 | + // Confirm no need to deallocate invidual entries. Note that `V: Copy` is asserted on |
| 248 | + // insert/lookup but not necessarily construction, primarily to avoid annoyingly propagating |
| 249 | + // the bounds into struct definitions everywhere. |
| 250 | + assert!(!std::mem::needs_drop::<K>()); |
| 251 | + assert!(!std::mem::needs_drop::<V>()); |
| 252 | + |
| 253 | + for (idx, bucket) in self.buckets.iter().enumerate() { |
| 254 | + let bucket = bucket.load(Ordering::Acquire); |
| 255 | + if !bucket.is_null() { |
| 256 | + let layout = std::alloc::Layout::array::<Slot<V>>(ENTRIES_BY_BUCKET[idx]).unwrap(); |
| 257 | + unsafe { |
| 258 | + std::alloc::dealloc(bucket.cast(), layout); |
| 259 | + } |
| 260 | + } |
| 261 | + } |
| 262 | + |
| 263 | + for (idx, bucket) in self.present.iter().enumerate() { |
| 264 | + let bucket = bucket.load(Ordering::Acquire); |
| 265 | + if !bucket.is_null() { |
| 266 | + let layout = std::alloc::Layout::array::<Slot<()>>(ENTRIES_BY_BUCKET[idx]).unwrap(); |
| 267 | + unsafe { |
| 268 | + std::alloc::dealloc(bucket.cast(), layout); |
| 269 | + } |
| 270 | + } |
| 271 | + } |
| 272 | + } |
| 273 | +} |
| 274 | + |
| 275 | +impl<K, V, I> VecCache<K, V, I> |
| 276 | +where |
| 277 | + K: Eq + Idx + Copy + Debug, |
| 278 | + V: Copy, |
| 279 | + I: Idx + Copy, |
| 280 | +{ |
| 281 | + #[inline(always)] |
| 282 | + pub fn lookup(&self, key: &K) -> Option<(V, I)> { |
| 283 | + let key = u32::try_from(key.index()).unwrap(); |
| 284 | + let slot_idx = SlotIndex::from_index(key); |
| 285 | + match unsafe { slot_idx.get(&self.buckets) } { |
| 286 | + Some((value, idx)) => Some((value, I::new(idx as usize))), |
| 287 | + None => None, |
| 288 | + } |
| 289 | + } |
| 290 | + |
| 291 | + #[inline] |
| 292 | + pub fn complete(&self, key: K, value: V, index: I) { |
| 293 | + let key = u32::try_from(key.index()).unwrap(); |
| 294 | + let slot_idx = SlotIndex::from_index(key); |
| 295 | + if slot_idx.put(&self.buckets, value, index.index() as u32) { |
| 296 | + let present_idx = self.len.fetch_add(1, Ordering::Relaxed); |
| 297 | + let slot = SlotIndex::from_index(present_idx as u32); |
| 298 | + // We should always be uniquely putting due to `len` fetch_add returning unique values. |
| 299 | + assert!(slot.put(&self.present, (), key)); |
| 300 | + } |
| 301 | + } |
| 302 | + |
| 303 | + pub fn iter(&self, f: &mut dyn FnMut(&K, &V, I)) { |
| 304 | + for idx in 0..self.len.load(Ordering::Acquire) { |
| 305 | + let key = SlotIndex::from_index(idx as u32); |
| 306 | + match unsafe { key.get(&self.present) } { |
| 307 | + // This shouldn't happen in our current usage (iter is really only |
| 308 | + // used long after queries are done running), but if we hit this in practice it's |
| 309 | + // probably fine to just break early. |
| 310 | + None => unreachable!(), |
| 311 | + Some(((), key)) => { |
| 312 | + let key = K::new(key as usize); |
| 313 | + // unwrap() is OK: present entries are always written only after we put the real |
| 314 | + // entry. |
| 315 | + let value = self.lookup(&key).unwrap(); |
| 316 | + f(&key, &value.0, value.1); |
| 317 | + } |
| 318 | + } |
| 319 | + } |
| 320 | + } |
| 321 | +} |
| 322 | + |
| 323 | +#[cfg(test)] |
| 324 | +mod tests; |
0 commit comments