Skip to content

Commit 5926e82

Browse files
committed
Auto merge of rust-lang#124780 - Mark-Simulacrum:lockless-cache, r=lcnr
Improve VecCache under parallel frontend This replaces the single Vec allocation with a series of progressively larger buckets. With the cfg for parallel enabled but with -Zthreads=1, this looks like a slight regression in i-count and cycle counts (~1%). With the parallel frontend at -Zthreads=4, this is an improvement (-5% wall-time from 5.788 to 5.4688 on libcore) than our current Lock-based approach, likely due to reducing the bouncing of the cache line holding the lock. At -Zthreads=32 it's a huge improvement (-46%: 8.829 -> 4.7319 seconds). try-job: i686-gnu-nopt try-job: dist-x86_64-linux
2 parents b71fb5e + da58efb commit 5926e82

File tree

6 files changed

+458
-65
lines changed

6 files changed

+458
-65
lines changed

Diff for: compiler/rustc_data_structures/src/lib.rs

+2
Original file line numberDiff line numberDiff line change
@@ -21,6 +21,7 @@
2121
#![feature(auto_traits)]
2222
#![feature(cfg_match)]
2323
#![feature(core_intrinsics)]
24+
#![feature(dropck_eyepatch)]
2425
#![feature(extend_one)]
2526
#![feature(file_buffered)]
2627
#![feature(hash_raw_entry)]
@@ -78,6 +79,7 @@ pub mod thinvec;
7879
pub mod transitive_relation;
7980
pub mod unhash;
8081
pub mod unord;
82+
pub mod vec_cache;
8183
pub mod work_queue;
8284

8385
mod atomic_ref;

Diff for: compiler/rustc_data_structures/src/vec_cache.rs

+324
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,324 @@
1+
//! VecCache maintains a mapping from K -> (V, I) pairing. K and I must be roughly u32-sized, and V
2+
//! must be Copy.
3+
//!
4+
//! VecCache supports efficient concurrent put/get across the key space, with write-once semantics
5+
//! (i.e., a given key can only be put once). Subsequent puts will panic.
6+
//!
7+
//! This is currently used for query caching.
8+
9+
use std::fmt::Debug;
10+
use std::marker::PhantomData;
11+
use std::sync::atomic::{AtomicPtr, AtomicU32, AtomicUsize, Ordering};
12+
13+
use rustc_index::Idx;
14+
15+
struct Slot<V> {
16+
// We never construct &Slot<V> so it's fine for this to not be in an UnsafeCell.
17+
value: V,
18+
// This is both an index and a once-lock.
19+
//
20+
// 0: not yet initialized.
21+
// 1: lock held, initializing.
22+
// 2..u32::MAX - 2: initialized.
23+
index_and_lock: AtomicU32,
24+
}
25+
26+
/// This uniquely identifies a single `Slot<V>` entry in the buckets map, and provides accessors for
27+
/// either getting the value or putting a value.
28+
#[derive(Copy, Clone, Debug)]
29+
struct SlotIndex {
30+
// the index of the bucket in VecCache (0 to 20)
31+
bucket_idx: usize,
32+
// number of entries in that bucket
33+
entries: usize,
34+
// the index of the slot within the bucket
35+
index_in_bucket: usize,
36+
}
37+
38+
// This makes sure the counts are consistent with what we allocate, precomputing each bucket a
39+
// compile-time. Visiting all powers of two is enough to hit all the buckets.
40+
//
41+
// We confirm counts are accurate in the slot_index_exhaustive test.
42+
const ENTRIES_BY_BUCKET: [usize; 21] = {
43+
let mut entries = [0; 21];
44+
let mut key = 0;
45+
loop {
46+
let si = SlotIndex::from_index(key);
47+
entries[si.bucket_idx] = si.entries;
48+
if key == 0 {
49+
key = 1;
50+
} else if key == (1 << 31) {
51+
break;
52+
} else {
53+
key <<= 1;
54+
}
55+
}
56+
entries
57+
};
58+
59+
impl SlotIndex {
60+
// This unpacks a flat u32 index into identifying which bucket it belongs to and the offset
61+
// within that bucket. As noted in the VecCache docs, buckets double in size with each index.
62+
// Typically that would mean 31 buckets (2^0 + 2^1 ... + 2^31 = u32::MAX - 1), but to reduce
63+
// the size of the VecCache struct and avoid uselessly small allocations, we instead have the
64+
// first bucket have 2**12 entries. To simplify the math, the second bucket also 2**12 entries,
65+
// and buckets double from there.
66+
//
67+
// We assert that [0, 2**32 - 1] uniquely map through this function to individual, consecutive
68+
// slots (see `slot_index_exhaustive` in tests).
69+
#[inline]
70+
const fn from_index(idx: u32) -> Self {
71+
let mut bucket = match idx.checked_ilog2() {
72+
Some(x) => x as usize,
73+
None => 0,
74+
};
75+
let entries;
76+
let running_sum;
77+
if bucket <= 11 {
78+
entries = 1 << 12;
79+
running_sum = 0;
80+
bucket = 0;
81+
} else {
82+
entries = 1 << bucket;
83+
running_sum = entries;
84+
bucket = bucket - 11;
85+
}
86+
SlotIndex { bucket_idx: bucket, entries, index_in_bucket: idx as usize - running_sum }
87+
}
88+
89+
// SAFETY: Buckets must be managed solely by functions here (i.e., get/put on SlotIndex) and
90+
// `self` comes from SlotIndex::from_index
91+
#[inline]
92+
unsafe fn get<V: Copy>(&self, buckets: &[AtomicPtr<Slot<V>>; 21]) -> Option<(V, u32)> {
93+
// SAFETY: `bucket_idx` is ilog2(u32).saturating_sub(11), which is at most 21, i.e.,
94+
// in-bounds of buckets. See `from_index` for computation.
95+
let bucket = unsafe { buckets.get_unchecked(self.bucket_idx) };
96+
let ptr = bucket.load(Ordering::Acquire);
97+
// Bucket is not yet initialized: then we obviously won't find this entry in that bucket.
98+
if ptr.is_null() {
99+
return None;
100+
}
101+
assert!(self.index_in_bucket < self.entries);
102+
// SAFETY: `bucket` was allocated (so <= isize in total bytes) to hold `entries`, so this
103+
// must be inbounds.
104+
let slot = unsafe { ptr.add(self.index_in_bucket) };
105+
106+
// SAFETY: initialized bucket has zeroed all memory within the bucket, so we are valid for
107+
// AtomicU32 access.
108+
let index_and_lock = unsafe { &(*slot).index_and_lock };
109+
let current = index_and_lock.load(Ordering::Acquire);
110+
let index = match current {
111+
0 => return None,
112+
// Treat "initializing" as actually just not initialized at all.
113+
// The only reason this is a separate state is that `complete` calls could race and
114+
// we can't allow that, but from load perspective there's no difference.
115+
1 => return None,
116+
_ => current - 2,
117+
};
118+
119+
// SAFETY:
120+
// * slot is a valid pointer (buckets are always valid for the index we get).
121+
// * value is initialized since we saw a >= 2 index above.
122+
// * `V: Copy`, so safe to read.
123+
let value = unsafe { (*slot).value };
124+
Some((value, index))
125+
}
126+
127+
fn bucket_ptr<V>(&self, bucket: &AtomicPtr<Slot<V>>) -> *mut Slot<V> {
128+
let ptr = bucket.load(Ordering::Acquire);
129+
if ptr.is_null() { self.initialize_bucket(bucket) } else { ptr }
130+
}
131+
132+
#[cold]
133+
fn initialize_bucket<V>(&self, bucket: &AtomicPtr<Slot<V>>) -> *mut Slot<V> {
134+
static LOCK: std::sync::Mutex<()> = std::sync::Mutex::new(());
135+
136+
// If we are initializing the bucket, then acquire a global lock.
137+
//
138+
// This path is quite cold, so it's cheap to use a global lock. This ensures that we never
139+
// have multiple allocations for the same bucket.
140+
let _allocator_guard = LOCK.lock().unwrap_or_else(|e| e.into_inner());
141+
142+
let ptr = bucket.load(Ordering::Acquire);
143+
144+
// OK, now under the allocator lock, if we're still null then it's definitely us that will
145+
// initialize this bucket.
146+
if ptr.is_null() {
147+
let bucket_layout =
148+
std::alloc::Layout::array::<Slot<V>>(self.entries as usize).unwrap();
149+
// This is more of a sanity check -- this code is very cold, so it's safe to pay a
150+
// little extra cost here.
151+
assert!(bucket_layout.size() > 0);
152+
// SAFETY: Just checked that size is non-zero.
153+
let allocated = unsafe { std::alloc::alloc_zeroed(bucket_layout).cast::<Slot<V>>() };
154+
if allocated.is_null() {
155+
std::alloc::handle_alloc_error(bucket_layout);
156+
}
157+
bucket.store(allocated, Ordering::Release);
158+
allocated
159+
} else {
160+
// Otherwise some other thread initialized this bucket after we took the lock. In that
161+
// case, just return early.
162+
ptr
163+
}
164+
}
165+
166+
/// Returns true if this successfully put into the map.
167+
#[inline]
168+
fn put<V>(&self, buckets: &[AtomicPtr<Slot<V>>; 21], value: V, extra: u32) -> bool {
169+
// SAFETY: `bucket_idx` is ilog2(u32).saturating_sub(11), which is at most 21, i.e.,
170+
// in-bounds of buckets.
171+
let bucket = unsafe { buckets.get_unchecked(self.bucket_idx) };
172+
let ptr = self.bucket_ptr(bucket);
173+
174+
assert!(self.index_in_bucket < self.entries);
175+
// SAFETY: `bucket` was allocated (so <= isize in total bytes) to hold `entries`, so this
176+
// must be inbounds.
177+
let slot = unsafe { ptr.add(self.index_in_bucket) };
178+
179+
// SAFETY: initialized bucket has zeroed all memory within the bucket, so we are valid for
180+
// AtomicU32 access.
181+
let index_and_lock = unsafe { &(*slot).index_and_lock };
182+
match index_and_lock.compare_exchange(0, 1, Ordering::AcqRel, Ordering::Acquire) {
183+
Ok(_) => {
184+
// We have acquired the initialization lock. It is our job to write `value` and
185+
// then set the lock to the real index.
186+
187+
unsafe {
188+
(&raw mut (*slot).value).write(value);
189+
}
190+
191+
index_and_lock.store(extra.checked_add(2).unwrap(), Ordering::Release);
192+
193+
true
194+
}
195+
196+
// Treat "initializing" as the caller's fault. Callers are responsible for ensuring that
197+
// there are no races on initialization. In the compiler's current usage for query
198+
// caches, that's the "active query map" which ensures each query actually runs once
199+
// (even if concurrently started).
200+
Err(1) => panic!("caller raced calls to put()"),
201+
202+
// This slot was already populated. Also ignore, currently this is the same as
203+
// "initializing".
204+
Err(_) => false,
205+
}
206+
}
207+
}
208+
209+
pub struct VecCache<K: Idx, V, I> {
210+
// Entries per bucket:
211+
// Bucket 0: 4096 2^12
212+
// Bucket 1: 4096 2^12
213+
// Bucket 2: 8192
214+
// Bucket 3: 16384
215+
// ...
216+
// Bucket 19: 1073741824
217+
// Bucket 20: 2147483648
218+
// The total number of entries if all buckets are initialized is u32::MAX-1.
219+
buckets: [AtomicPtr<Slot<V>>; 21],
220+
221+
// In the compiler's current usage these are only *read* during incremental and self-profiling.
222+
// They are an optimization over iterating the full buckets array.
223+
present: [AtomicPtr<Slot<()>>; 21],
224+
len: AtomicUsize,
225+
226+
key: PhantomData<(K, I)>,
227+
}
228+
229+
impl<K: Idx, V, I> Default for VecCache<K, V, I> {
230+
fn default() -> Self {
231+
VecCache {
232+
buckets: Default::default(),
233+
key: PhantomData,
234+
len: Default::default(),
235+
present: Default::default(),
236+
}
237+
}
238+
}
239+
240+
// SAFETY: No access to `V` is made.
241+
unsafe impl<K: Idx, #[may_dangle] V, I> Drop for VecCache<K, V, I> {
242+
fn drop(&mut self) {
243+
// We have unique ownership, so no locks etc. are needed. Since `K` and `V` are both `Copy`,
244+
// we are also guaranteed to just need to deallocate any large arrays (not iterate over
245+
// contents).
246+
//
247+
// Confirm no need to deallocate invidual entries. Note that `V: Copy` is asserted on
248+
// insert/lookup but not necessarily construction, primarily to avoid annoyingly propagating
249+
// the bounds into struct definitions everywhere.
250+
assert!(!std::mem::needs_drop::<K>());
251+
assert!(!std::mem::needs_drop::<V>());
252+
253+
for (idx, bucket) in self.buckets.iter().enumerate() {
254+
let bucket = bucket.load(Ordering::Acquire);
255+
if !bucket.is_null() {
256+
let layout = std::alloc::Layout::array::<Slot<V>>(ENTRIES_BY_BUCKET[idx]).unwrap();
257+
unsafe {
258+
std::alloc::dealloc(bucket.cast(), layout);
259+
}
260+
}
261+
}
262+
263+
for (idx, bucket) in self.present.iter().enumerate() {
264+
let bucket = bucket.load(Ordering::Acquire);
265+
if !bucket.is_null() {
266+
let layout = std::alloc::Layout::array::<Slot<()>>(ENTRIES_BY_BUCKET[idx]).unwrap();
267+
unsafe {
268+
std::alloc::dealloc(bucket.cast(), layout);
269+
}
270+
}
271+
}
272+
}
273+
}
274+
275+
impl<K, V, I> VecCache<K, V, I>
276+
where
277+
K: Eq + Idx + Copy + Debug,
278+
V: Copy,
279+
I: Idx + Copy,
280+
{
281+
#[inline(always)]
282+
pub fn lookup(&self, key: &K) -> Option<(V, I)> {
283+
let key = u32::try_from(key.index()).unwrap();
284+
let slot_idx = SlotIndex::from_index(key);
285+
match unsafe { slot_idx.get(&self.buckets) } {
286+
Some((value, idx)) => Some((value, I::new(idx as usize))),
287+
None => None,
288+
}
289+
}
290+
291+
#[inline]
292+
pub fn complete(&self, key: K, value: V, index: I) {
293+
let key = u32::try_from(key.index()).unwrap();
294+
let slot_idx = SlotIndex::from_index(key);
295+
if slot_idx.put(&self.buckets, value, index.index() as u32) {
296+
let present_idx = self.len.fetch_add(1, Ordering::Relaxed);
297+
let slot = SlotIndex::from_index(present_idx as u32);
298+
// We should always be uniquely putting due to `len` fetch_add returning unique values.
299+
assert!(slot.put(&self.present, (), key));
300+
}
301+
}
302+
303+
pub fn iter(&self, f: &mut dyn FnMut(&K, &V, I)) {
304+
for idx in 0..self.len.load(Ordering::Acquire) {
305+
let key = SlotIndex::from_index(idx as u32);
306+
match unsafe { key.get(&self.present) } {
307+
// This shouldn't happen in our current usage (iter is really only
308+
// used long after queries are done running), but if we hit this in practice it's
309+
// probably fine to just break early.
310+
None => unreachable!(),
311+
Some(((), key)) => {
312+
let key = K::new(key as usize);
313+
// unwrap() is OK: present entries are always written only after we put the real
314+
// entry.
315+
let value = self.lookup(&key).unwrap();
316+
f(&key, &value.0, value.1);
317+
}
318+
}
319+
}
320+
}
321+
}
322+
323+
#[cfg(test)]
324+
mod tests;

0 commit comments

Comments
 (0)