@@ -17,9 +17,9 @@ forecast_generation_date <- Sys.Date()
17
17
forecast_date <- round_date(forecast_generation_date , " weeks" , week_start = 3 )
18
18
# forecast_generation_date needs to follow suit, but it's more complicated
19
19
# because sometimes we forecast on Thursday.
20
- # forecast_generation_date <- c(as.Date(c("2024-11-20", "2024-11-27", "2024-12-04", "2024-12-11", "2024-12-18", "2024-12-26", "2025-01-02")), seq.Date(as.Date("2025-01-08"), Sys.Date(), by = 7L))
20
+ # forecast_generation_date <- c(as.Date(c("2024-11-20", "2024-11-27", "2024-12-04", "2024-12-11", "2024-12-18", "2024-12-26", "2025-01-02")), seq.Date(as.Date("2025-01-08"), Sys.Date(), by = 7L))
21
21
# If doing backfill, you can set the forecast_date to a sequence of dates.
22
- # forecast_date <- seq.Date(as.Date("2024-11-20"), Sys.Date(), by = 7L)
22
+ # forecast_date <- seq.Date(as.Date("2024-11-20"), Sys.Date(), by = 7L)
23
23
24
24
forecaster_fns <- list2(
25
25
linear = function (epi_data , ahead , extra_data , ... ) {
@@ -82,24 +82,24 @@ rlang::list2(
82
82
if (file.exists(here :: here(" .nhsn_covid_cache.parquet" ))) {
83
83
previous_result <- qs :: qread(here :: here(" .nhsn_covid_cache.parquet" ))
84
84
} else
85
- # if something is different, update the file
86
- if (! isTRUE(all.equal(previous_result , most_recent_result ))) {
87
- qs :: qsave(most_recent_result , here :: here(" .nhsn_covid_cache.parquet" ))
88
- } else {
89
- qs :: qsave(most_recent_result , here :: here(" .nhsn_covid_cache.parquet" ))
90
- }
85
+ # if something is different, update the file
86
+ if (! isTRUE(all.equal(previous_result , most_recent_result ))) {
87
+ qs :: qsave(most_recent_result , here :: here(" .nhsn_covid_cache.parquet" ))
88
+ } else {
89
+ qs :: qsave(most_recent_result , here :: here(" .nhsn_covid_cache.parquet" ))
90
+ }
91
91
NULL
92
92
},
93
93
description = " Download the result, and update the file only if it's actually different" ,
94
94
priority = 1 ,
95
95
cue = tar_cue(mode = " always" )
96
- ),
96
+ ),
97
97
tar_change(
98
98
name = nhsn_latest_data ,
99
99
command = {
100
- qs :: qread(here :: here(" .nhsn_flu_cache .parquet" ))
100
+ qs :: qread(here :: here(" .nhsn_covid_cache .parquet" ))
101
101
},
102
- change = tools :: md5sum(here :: here(" .nhsn_flu_cache .parquet" ))
102
+ change = tools :: md5sum(here :: here(" .nhsn_covid_cache .parquet" ))
103
103
),
104
104
tar_target(
105
105
name = nhsn_archive_data ,
@@ -116,10 +116,10 @@ rlang::list2(
116
116
),
117
117
tar_map(
118
118
values = tibble(
119
- forecast_date_int = forecast_date ,
120
- forecast_generation_date_int = forecast_generation_date ,
121
- forecast_date_chr = as.character(forecast_date_int )
122
- ),
119
+ forecast_date_int = forecast_date ,
120
+ forecast_generation_date_int = forecast_generation_date ,
121
+ forecast_date_chr = as.character(forecast_date_int )
122
+ ),
123
123
names = " forecast_date_chr" ,
124
124
tar_target(
125
125
name = geo_forecasters_weights ,
@@ -196,8 +196,8 @@ rlang::list2(
196
196
filter(geo_value %nin % geo_exclusions ) %> %
197
197
ungroup() %> %
198
198
bind_rows(forecast_res %> %
199
- filter(forecaster == " windowed_seasonal_extra_sources" ) %> %
200
- filter(forecast_date < target_end_date )) %> % # don't use for neg aheads
199
+ filter(forecaster == " windowed_seasonal_extra_sources" ) %> %
200
+ filter(forecast_date < target_end_date )) %> % # don't use for neg aheads
201
201
group_by(geo_value , forecast_date , target_end_date , quantile ) %> %
202
202
summarize(value = mean(value , na.rm = TRUE ), .groups = " drop" ) %> %
203
203
sort_by_quantile()
0 commit comments