@@ -40,21 +40,21 @@ make_unique_ensemble_grid <- function() {
40
40
),
41
41
# median forecaster
42
42
" ensemble_average" ,
43
- list (
44
- forecaster = " scaled_pop" ,
45
- trainer = " linreg" ,
46
- pop_scaling = FALSE ,
47
- lags = c(0 , 3 , 5 , 7 , 14 )
48
- ),
43
+ list (average_type = " median" ),
49
44
list (
50
45
list (
51
46
forecaster = " scaled_pop" ,
52
47
trainer = " linreg" ,
53
48
pop_scaling = TRUE ,
54
49
lags = c(0 , 3 , 5 , 7 , 14 )
55
50
),
51
+ list (
52
+ forecaster = " scaled_pop" ,
53
+ trainer = " linreg" ,
54
+ pop_scaling = FALSE ,
55
+ lags = c(0 , 3 , 5 , 7 , 14 )
56
+ )
56
57
),
57
- list (average_type = " median" ),
58
58
)
59
59
}
60
60
@@ -155,7 +155,7 @@ ensembles_and_scores_by_ahead <- tar_map(
155
155
priority = .9999
156
156
),
157
157
tar_target(
158
- name = ONE_AHEAD_SCORE_NAME ,
158
+ name = score_by_ahead ,
159
159
command = {
160
160
run_evaluation_measure(
161
161
data = ensemble_by_ahead ,
@@ -169,113 +169,7 @@ ensembles_and_scores_by_ahead <- tar_map(
169
169
}
170
170
)
171
171
)
172
- # # env <- list(ensemble_forecast_name = as.symbol(paste(ONE_AHEAD_ENSEMBLE_NAME,
173
- # # target_ensemble_grid[[i_ensemble, "id"]],
174
- # # sep = "_"
175
- # # )))
176
-
177
- # # make_ensemble_targets_by_ahead <- function() {
178
- # # ensembles_by_ahead <- list()
179
- # # ensemble_scores_by_ahead <- list()
180
- # # for (i_ensemble in 1:nrow(target_ensemble_grid)) {
181
- # # ensemble <- target_ensemble_grid[[i_ensemble, "ensemble"]][[1]]
182
- # # models_to_ensemble <-
183
- # # map(paste(ONE_AHEAD_FORECAST_NAME, target_ensemble_grid[[i_ensemble, "forecaster_ids"]][[1]], sep = "_"), as.symbol)
184
- # # ensemble_params <-
185
- # # target_ensemble_grid[[i_ensemble, "ensemble_params"]][[1]]
186
- # # ensemble_params_names <-
187
- # # target_ensemble_grid[[i_ensemble, "ensemble_params_names"]]
188
- # # archive <- sym("joined_archive_data_2022")
189
- # # ensemble_id <- (target_ensemble_grid[[i_ensemble, "id"]])
190
-
191
- # # ## passed_on_variables <- list(
192
- # # ## ensemble = target_ensemble_grid[[i_ensemble, "ensemble"]][[1]],
193
- # # ## models_to_ensemble =
194
- # # ## map(paste(ONE_AHEAD_FORECAST_NAME, target_ensemble_grid[[i_ensemble, "forecaster_ids"]][[1]], sep = "_"), sym),
195
- # # ## ensemble_params =
196
- # # ## target_ensemble_grid[[i_ensemble, "ensemble_params"]][[1]],
197
- # # ## ensemble_params_names =
198
- # # ## target_ensemble_grid[[i_ensemble, "ensemble_params_names"]],
199
- # # ## archive = sym("joined_archive_data_2022")
200
- # # ## )
201
-
202
- # # ## (ensembles_by_ahead[[i_ensemble]] <- tar_combine_raw(
203
- # # ## name = "DO THE NEEDFUL",
204
- # # ## !!models_to_ensemble,
205
- # # ## command = {
206
- # # ## browser()
207
- # # ## !!!.x
208
- # # ## }
209
- # # ## ))
210
-
211
- # # ensembles_by_ahead[[i_ensemble]] <- tar_target_raw(
212
- # # name = paste(ONE_AHEAD_ENSEMBLE_NAME, ensemble_id, sep = "_"),
213
- # # command = eval(
214
- # # substitute(
215
- # # ensemble(archive,
216
- # # models_to_ensemble,
217
- # # "hhs",
218
- # # extra_sources = "chng",
219
- # # ensemble_params,
220
- # # ensemble_params_names
221
- # # )
222
- # # ),
223
- # # env = passed_on_variables
224
- # # ),
225
- # # priority = .9999
226
- # # )
227
- # # ## ensemble_name <- target_ensemble_grid[[i_ensemble, "id"]]
228
- # # ## list_of_dependent_forecasters <- target_ensemble_grid[[i_ensemble, "ensemble"]][[1]]
229
- # # ## ensembles_by_ahead[[i_ensemble]] <- tar_target(
230
- # # ## name = paste(!!ONE_AHEAD_ENSEMBLE_NAME, !!ensemble_name, sep = "_"),
231
- # # ## command = {
232
- # # ## !!()(archive,
233
- # # ## list_of_dependent_forecasters,
234
- # # ## models_to_ensemble,
235
- # # ## "hhs",
236
- # # ## extra_sources = "chng",
237
- # # ## !!(target_ensemble_grid[[i_ensemble, "ensemble_params"]][[1]]),
238
- # # ## !!(target_ensemble_grid[[i_ensemble, "ensemble_params"]][[1]])
239
- # # ## )
240
- # # ## }
241
- # # ## )
242
-
243
- # # ## ensembles_by_ahead[[i_ensemble]] <- tar_target_raw(
244
- # # ## name = paste(!!ONE_AHEAD_ENSEMBLE_NAME, !!(target_ensemble_grid[[i_ensemble, "id"]]), sep = "_"),
245
- # # ## command = substitute(
246
- # # ## ensemble(archive,
247
- # # ## models_to_ensemble,
248
- # # ## "hhs",
249
- # # ## extra_sources = "chng",
250
- # # ## ensemble_params,
251
- # # ## ensemble_params_names
252
- # # ## ),
253
- # # ## env = passed_on_variables
254
- # # ## )
255
- # # ## )
256
- # # ## ensemble_scores_by_ahead[[i_ensemble]] <- tar_target_raw(
257
- # # ## name = paste(ONE_AHEAD_SCORE_NAME, target_ensemble_grid[[i_ensemble, "id"]], sep = "_"),
258
- # # ## command = substitute(
259
- # # ## run_evaluation_measure(
260
- # # ## data = ensemble_forecast_name,
261
- # # ## evaluation_data = hhs_evaluation_data,
262
- # # ## measure = list(
263
- # # ## wis = weighted_interval_score,
264
- # # ## ae = absolute_error,
265
- # # ## cov_80 = interval_coverage(0.8)
266
- # # ## )
267
- # # ## ),
268
- # # ## env = list(ensemble_forecast_name = as.symbol(paste(ONE_AHEAD_ENSEMBLE_NAME,
269
- # # ## target_ensemble_grid[[i_ensemble, "id"]],
270
- # # ## sep = "_"
271
- # # ## )))
272
- # # ## )
273
- # # ## )
274
- # # }
275
- # # return(c(ensembles_by_ahead, ensemble_scores_by_ahead))
276
- # # }
277
- # ensembles_and_scores_by_ahead <- make_ensemble_targets_by_ahead()
278
- # ensembles_and_scores <- make_ensemble_targets_and_scores()
172
+ ensembles_and_scores <- make_ensemble_targets_and_scores()
279
173
# other sources
280
174
external_names_and_scores <- make_external_names_and_scores()
281
175
@@ -286,6 +180,6 @@ list(
286
180
forecasts_and_scores ,
287
181
ensembles_params_grid_target ,
288
182
ensembles_and_scores_by_ahead ,
289
- # ensembles_and_scores,
183
+ ensembles_and_scores ,
290
184
external_names_and_scores
291
185
)
0 commit comments