Skip to content

Commit b8ee54e

Browse files
committed
rebuild readme
1 parent 73b0c08 commit b8ee54e

File tree

1 file changed

+42
-8
lines changed

1 file changed

+42
-8
lines changed

README.md

+42-8
Original file line numberDiff line numberDiff line change
@@ -111,22 +111,37 @@ two_week_ahead <- arx_forecaster(
111111
two_week_ahead
112112
```
113113

114-
#>
115114
#> ══ A basic forecaster of type ARX Forecaster ═══════════════════════════════════
115+
116116
#>
117-
#> This forecaster was fit on 2023-10-20 08:59:57
117+
118+
#> This forecaster was fit on 2023-12-23 08:50:59.
119+
118120
#>
119-
#> Training data was an `epi_df` with
121+
122+
#> Training data was an <epi_df> with:
123+
120124
#> • Geography: state,
125+
121126
#> • Time type: day,
127+
122128
#> • Using data up-to-date as of: 2022-05-31 12:08:25.
129+
123130
#>
131+
124132
#> ── Predictions ─────────────────────────────────────────────────────────────────
133+
125134
#>
135+
126136
#> A total of 56 predictions are available for
137+
127138
#> • 56 unique geographic regions,
128-
#> • At forecast dates: 2021-12-31,
129-
#> • For target dates: 2022-01-14.
139+
140+
#> • At forecast date: 2021-12-31,
141+
142+
#> • For target date: 2022-01-14.
143+
144+
#>
130145

131146
In this case, we have used a number of different lags for the case rate,
132147
while only using 3 weekly lags for the death rate (as predictors). The
@@ -139,13 +154,23 @@ last available time value in the data.
139154
two_week_ahead$epi_workflow
140155
```
141156

157+
#>
158+
142159
#> ══ Epi Workflow [trained] ══════════════════════════════════════════════════════
160+
143161
#> Preprocessor: Recipe
162+
144163
#> Model: linear_reg()
164+
145165
#> Postprocessor: Frosting
166+
146167
#>
168+
147169
#> ── Preprocessor ────────────────────────────────────────────────────────────────
148-
#> 6 Recipe Steps
170+
171+
#>
172+
173+
#> 6 Recipe steps.
149174

150175
#> 1. step_epi_lag()
151176

@@ -160,7 +185,9 @@ two_week_ahead$epi_workflow
160185
#> 6. step_training_window()
161186

162187
#>
188+
163189
#> ── Model ───────────────────────────────────────────────────────────────────────
190+
164191
#>
165192
#> Call:
166193
#> stats::lm(formula = ..y ~ ., data = data)
@@ -171,10 +198,15 @@ two_week_ahead$epi_workflow
171198
#> lag_3_case_rate lag_7_case_rate lag_14_case_rate lag_0_death_rate
172199
#> 0.0011425 0.0012481 0.0003041 0.1351769
173200
#> lag_7_death_rate lag_14_death_rate
174-
#> 0.1471127 0.1062473
201+
#> 0.1471127 0.1062473
202+
175203
#>
204+
176205
#> ── Postprocessor ───────────────────────────────────────────────────────────────
177-
#> 5 Frosting Layers
206+
207+
#>
208+
209+
#> 5 Frosting layers.
178210

179211
#> 1. layer_predict()
180212

@@ -186,6 +218,8 @@ two_week_ahead$epi_workflow
186218

187219
#> 5. layer_threshold()
188220

221+
#>
222+
189223
The fitted model here involved preprocessing the data to appropriately
190224
generate lagged predictors, estimating a linear model with `stats::lm()`
191225
and then postprocessing the results to be meaningful for epidemiological

0 commit comments

Comments
 (0)