@@ -24,7 +24,6 @@ library(recipes)
24
24
library(epiprocess)
25
25
library(epipredict)
26
26
library(ggplot2)
27
- library(lubridate)
28
27
theme_set(theme_bw())
29
28
```
30
29
@@ -48,10 +47,9 @@ in `epi_df` format.
48
47
49
48
``` {r employ-stats, include=F}
50
49
data("grad_employ_subset")
51
- grad_employ_subset <- grad_employ_subset %>%
52
- mutate(time_value = ymd(paste0(time_value, "0101")))
53
- year_start <- year(min(grad_employ_subset$time_value))
54
- year_end <- year(max(grad_employ_subset$time_value))
50
+ grad_employ_subset <- grad_employ_subset
51
+ year_start <- min(grad_employ_subset$time_value)
52
+ year_end <- max(grad_employ_subset$time_value)
55
53
```
56
54
57
55
# Example panel data overview
@@ -232,12 +230,14 @@ with incomplete dates.
232
230
employ_small %>%
233
231
filter(geo_value %in% c("British Columbia", "Ontario")) %>%
234
232
filter(grepl("degree", edu_qual, fixed = T)) %>%
233
+ group_by(geo_value, time_value, edu_qual, age_group) %>%
234
+ summarise(num_graduates_prop = sum(num_graduates_prop), .groups = "drop") %>%
235
235
ggplot(aes(x = time_value, y = num_graduates_prop, color = geo_value)) +
236
236
geom_line() +
237
+ scale_colour_manual(values = c("Cornflowerblue", "Orange"), name = "") +
237
238
facet_grid(rows = vars(edu_qual), cols = vars(age_group)) +
238
239
xlab("Year") +
239
- ylab("# of graduates as proportion of sum within group") +
240
- ggtitle("Trend in # of Graduates by Age Group and Education in BC and ON") +
240
+ ylab("Percentage of gratuates") +
241
241
theme(legend.position = "bottom")
242
242
```
243
243
@@ -266,8 +266,8 @@ values are both in years.
266
266
267
267
``` {r make-recipe, include=T, eval=T}
268
268
r <- epi_recipe(employ_small) %>%
269
- step_epi_ahead(num_graduates_prop, ahead = 365 ) %>% # lag & ahead units in days
270
- step_epi_lag(num_graduates_prop, lag = 0:2 * 365 ) %>%
269
+ step_epi_ahead(num_graduates_prop, ahead = 1 ) %>%
270
+ step_epi_lag(num_graduates_prop, lag = 0:2) %>%
271
271
step_epi_naomit()
272
272
r
273
273
```
@@ -502,9 +502,7 @@ where $y_i$ is the 2-year median income (proportion) at time $i$.
502
502
503
503
``` {r flatline, include=T, warning=F}
504
504
out_fl <- flatline_forecaster(employ_small, "med_income_2y_prop",
505
- args_list = flatline_args_list(
506
- ahead = 365L, forecast_date = as.Date("2015-01-01"),
507
- )
505
+ args_list = flatline_args_list(ahead = 1)
508
506
)
509
507
510
508
out_fl
@@ -523,9 +521,7 @@ with Exogenous Inputs" section of this article, but where all inputs have the
523
521
same number of lags.
524
522
525
523
``` {r arx-lr, include=T, warning=F}
526
- arx_args <- arx_args_list(
527
- lags = c(0L, 365L), ahead = 365L, forecast_date = as.Date("2015-01-01")
528
- )
524
+ arx_args <- arx_args_list(lags = c(0L, 1L), ahead = 1L)
529
525
530
526
out_arx_lr <- arx_forecaster(employ_small, "med_income_5y_prop",
531
527
c("med_income_5y_prop", "med_income_2y_prop", "num_graduates_prop"),
0 commit comments