@@ -4,34 +4,40 @@ Pre-1.0.0 numbering scheme: 0.x will indicate releases, while 0.0.x will indicat
4
4
5
5
# epipredict 0.1
6
6
7
- - add ` check_enough_train_data ` that will error if training data is too small
8
- - added ` check_enough_train_data ` to ` arx_forecaster `
9
- - simplify ` layer_residual_quantiles() ` to avoid timesuck in ` utils::methods() `
10
- - rename the ` dist_quantiles() ` to be more descriptive, breaking change
11
- - removes previous ` pivot_quantiles() ` (now ` *_wider() ` , breaking change)
12
- - add ` pivot_quantiles_wider() ` for easier plotting
13
- - add complement ` pivot_quantiles_longer() `
14
- - add ` cdc_baseline_forecaster() ` and ` flusight_hub_formatter() `
15
- - add ` smooth_quantile_reg() `
16
- - improved printing of various methods / internals
17
- - canned forecasters get a class
18
- - fixed quantile bug in ` flatline_forecaster() `
19
- - add functionality to output the unfit workflow from the canned forecasters
20
- - add quantile_reg()
21
- - clean up documentation bugs
22
- - add smooth_quantile_reg()
23
- - add classifier
24
- - training window step debugged
25
- - ` min_train_window ` argument removed from canned forecasters
26
- - add forecasters
27
- - implement postprocessing
28
- - vignettes avaliable
29
- - arx_forecaster
30
- - pkgdown
31
- - Publish public for easy navigation
32
- - Two simple forecasters as test beds
33
- - Working vignette
34
- - use ` checkmate ` for input validation
35
- - refactor quantile extrapolation (possibly creates different results)
36
- - force ` target_date ` + ` forecast_date ` handling to match the time_type of
37
- the epi_df. allows for annual and weekly data
7
+ - improve ` ahead ` , ` target_date ` and ` forecast_date ` default value handling in
8
+ ` arx_forecaster() ` , ` arx_classifier() ` , ` cdc_baseline_forecaster() ` , and
9
+ ` flatline_forecaster() ` ; if ` target_date ` is provided and ` ahead ` is not,
10
+ ` ahead ` will be set to the difference between the ` target_date ` and
11
+ ` forecast_date `
12
+ - ` layer_residual_quantiles() ` will now error if any of the residual quantiles are NA
13
+ - add ` check_enough_train_data ` that will error if training data is too small
14
+ - added ` check_enough_train_data ` to ` arx_forecaster `
15
+ - simplify ` layer_residual_quantiles() ` to avoid timesuck in ` utils::methods() `
16
+ - rename the ` dist_quantiles() ` to be more descriptive, breaking change
17
+ - removes previous ` pivot_quantiles() ` (now ` *_wider() ` , breaking change)
18
+ - add ` pivot_quantiles_wider() ` for easier plotting
19
+ - add complement ` pivot_quantiles_longer() `
20
+ - add ` cdc_baseline_forecaster() ` and ` flusight_hub_formatter() `
21
+ - add ` smooth_quantile_reg() `
22
+ - improved printing of various methods / internals
23
+ - canned forecasters get a class
24
+ - fixed quantile bug in ` flatline_forecaster() `
25
+ - add functionality to output the unfit workflow from the canned forecasters
26
+ - add quantile_reg()
27
+ - clean up documentation bugs
28
+ - add smooth_quantile_reg()
29
+ - add classifier
30
+ - training window step debugged
31
+ - ` min_train_window ` argument removed from canned forecasters
32
+ - add forecasters
33
+ - implement postprocessing
34
+ - vignettes avaliable
35
+ - arx_forecaster
36
+ - pkgdown
37
+ - Publish public for easy navigation
38
+ - Two simple forecasters as test beds
39
+ - Working vignette
40
+ - use ` checkmate ` for input validation
41
+ - refactor quantile extrapolation (possibly creates different results)
42
+ - force ` target_date ` + ` forecast_date ` handling to match the time_type of
43
+ the epi_df. allows for annual and weekly data
0 commit comments