|
| 1 | +from dataclasses import Field, InitVar, dataclass, field, fields |
| 2 | +from typing import ( |
| 3 | + Any, |
| 4 | + Callable, |
| 5 | + Dict, |
| 6 | + Generic, |
| 7 | + Iterable, |
| 8 | + List, |
| 9 | + Literal, |
| 10 | + Mapping, |
| 11 | + Optional, |
| 12 | + OrderedDict, |
| 13 | + Sequence, |
| 14 | + Tuple, |
| 15 | + Union, |
| 16 | + overload, |
| 17 | + get_args, |
| 18 | +) |
| 19 | +from functools import cached_property |
| 20 | +from pandas import DataFrame |
| 21 | +from ._model import ( |
| 22 | + EpiRangeLike, |
| 23 | + CALL_TYPE, |
| 24 | + EpidataFieldInfo, |
| 25 | + EpidataFieldType, |
| 26 | + EpiRangeParam, |
| 27 | + InvalidArgumentException, |
| 28 | +) |
| 29 | + |
| 30 | + |
| 31 | +GeoType = Literal["nation", "msa", "hrr", "hhs", "state", "county"] |
| 32 | +TimeType = Literal["day", "week"] |
| 33 | + |
| 34 | + |
| 35 | +@dataclass |
| 36 | +class WebLink: |
| 37 | + """ |
| 38 | + represents a web link |
| 39 | + """ |
| 40 | + |
| 41 | + alt: str |
| 42 | + href: str |
| 43 | + |
| 44 | + |
| 45 | +@dataclass |
| 46 | +class DataSignalGeoStatistics: |
| 47 | + """ |
| 48 | + COVIDcast signal statistics |
| 49 | + """ |
| 50 | + |
| 51 | + min: float |
| 52 | + max: float |
| 53 | + mean: float |
| 54 | + stdev: float |
| 55 | + |
| 56 | + |
| 57 | +def _limit_fields(data: Dict[str, Any], class_fields: Tuple[Field, ...]) -> Dict[str, Any]: |
| 58 | + field_names = {f.name for f in class_fields} |
| 59 | + return {k: v for k, v in data.items() if k in field_names} |
| 60 | + |
| 61 | + |
| 62 | +def define_covidcast_fields() -> List[EpidataFieldInfo]: |
| 63 | + return [ |
| 64 | + EpidataFieldInfo("source", EpidataFieldType.text), |
| 65 | + EpidataFieldInfo("signal", EpidataFieldType.text), |
| 66 | + EpidataFieldInfo( |
| 67 | + "geo_type", |
| 68 | + EpidataFieldType.categorical, |
| 69 | + categories=list(get_args(GeoType)), |
| 70 | + ), |
| 71 | + EpidataFieldInfo("geo_value", EpidataFieldType.text), |
| 72 | + EpidataFieldInfo("time_type", EpidataFieldType.categorical, categories=list(get_args(TimeType))), |
| 73 | + EpidataFieldInfo("time_value", EpidataFieldType.date), |
| 74 | + EpidataFieldInfo("issue", EpidataFieldType.date), |
| 75 | + EpidataFieldInfo("lag", EpidataFieldType.int), |
| 76 | + EpidataFieldInfo("value", EpidataFieldType.float), |
| 77 | + EpidataFieldInfo("stderr", EpidataFieldType.float), |
| 78 | + EpidataFieldInfo("sample_size", EpidataFieldType.int), |
| 79 | + EpidataFieldInfo("direction", EpidataFieldType.float), |
| 80 | + EpidataFieldInfo("missing_value", EpidataFieldType.int), |
| 81 | + EpidataFieldInfo("missing_stderr", EpidataFieldType.int), |
| 82 | + EpidataFieldInfo("missing_sample_size", EpidataFieldType.int), |
| 83 | + ] |
| 84 | + |
| 85 | + |
| 86 | +@dataclass |
| 87 | +class DataSignal(Generic[CALL_TYPE]): |
| 88 | + """ |
| 89 | + represents a COVIDcast data signal |
| 90 | + """ |
| 91 | + |
| 92 | + _create_call: Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE] |
| 93 | + |
| 94 | + source: str |
| 95 | + signal: str |
| 96 | + signal_basename: str |
| 97 | + name: str |
| 98 | + active: bool |
| 99 | + short_description: str |
| 100 | + description: str |
| 101 | + time_label: str |
| 102 | + value_label: str |
| 103 | + format: Literal["per100k", "percent", "fraction", "count", "raw"] = "raw" |
| 104 | + category: Literal["early", "public", "late", "other"] = "other" |
| 105 | + high_values_are: Literal["good", "bad", "neutral"] = "neutral" |
| 106 | + is_smoothed: bool = False |
| 107 | + is_weighted: bool = False |
| 108 | + is_cumulative: bool = False |
| 109 | + has_stderr: bool = False |
| 110 | + has_sample_size: bool = False |
| 111 | + link: Sequence[WebLink] = field(default_factory=list) |
| 112 | + compute_from_base: bool = False |
| 113 | + time_type: TimeType = "day" |
| 114 | + |
| 115 | + geo_types: Dict[GeoType, DataSignalGeoStatistics] = field(default_factory=dict) |
| 116 | + |
| 117 | + def __post_init__(self) -> None: |
| 118 | + self.link = [WebLink(alt=l["alt"], href=l["href"]) if isinstance(l, dict) else l for l in self.link] |
| 119 | + stats_fields = fields(DataSignalGeoStatistics) |
| 120 | + self.geo_types = { |
| 121 | + k: DataSignalGeoStatistics(**_limit_fields(l, stats_fields)) if isinstance(l, dict) else l |
| 122 | + for k, l in self.geo_types.items() |
| 123 | + } |
| 124 | + |
| 125 | + @staticmethod |
| 126 | + def to_df(signals: Iterable["DataSignal"]) -> DataFrame: |
| 127 | + df = DataFrame( |
| 128 | + signals, |
| 129 | + columns=[ |
| 130 | + "source", |
| 131 | + "signal", |
| 132 | + "name", |
| 133 | + "active", |
| 134 | + "short_description", |
| 135 | + "description", |
| 136 | + "time_type", |
| 137 | + "time_label", |
| 138 | + "value_label", |
| 139 | + "format", |
| 140 | + "category", |
| 141 | + "high_values_are", |
| 142 | + "is_smoothed", |
| 143 | + "is_weighted", |
| 144 | + "is_cumulative", |
| 145 | + "has_stderr", |
| 146 | + "has_sample_size", |
| 147 | + ], |
| 148 | + ) |
| 149 | + df.insert(6, "geo_types", [",".join(s.geo_types.keys()) for s in signals]) |
| 150 | + return df.set_index(["source", "signal"]) |
| 151 | + |
| 152 | + @property |
| 153 | + def key(self) -> Tuple[str, str]: |
| 154 | + return (self.source, self.signal) |
| 155 | + |
| 156 | + def call( |
| 157 | + self, |
| 158 | + geo_type: GeoType, |
| 159 | + geo_values: Union[int, str, Iterable[Union[int, str]]], |
| 160 | + time_values: EpiRangeParam, |
| 161 | + as_of: Union[None, str, int] = None, |
| 162 | + issues: Optional[EpiRangeParam] = None, |
| 163 | + lag: Optional[int] = None, |
| 164 | + ) -> CALL_TYPE: |
| 165 | + """Fetch Delphi's COVID-19 Surveillance Streams""" |
| 166 | + if any((v is None for v in (geo_type, geo_values, time_values))): |
| 167 | + raise InvalidArgumentException("`geo_type`, `time_values`, and `geo_values` are all required") |
| 168 | + if issues is not None and lag is not None: |
| 169 | + raise InvalidArgumentException("`issues` and `lag` are mutually exclusive") |
| 170 | + |
| 171 | + return self._create_call( |
| 172 | + dict( |
| 173 | + data_source=self.source, |
| 174 | + signals=self.signal, |
| 175 | + time_type=self.time_type, |
| 176 | + time_values=time_values, |
| 177 | + geo_type=geo_type, |
| 178 | + geo_values=geo_values, |
| 179 | + as_of=as_of, |
| 180 | + issues=issues, |
| 181 | + lag=lag, |
| 182 | + ) |
| 183 | + ) |
| 184 | + |
| 185 | + def __call__( |
| 186 | + self, |
| 187 | + geo_type: GeoType, |
| 188 | + geo_values: Union[int, str, Iterable[Union[int, str]]], |
| 189 | + time_values: EpiRangeParam, |
| 190 | + as_of: Union[None, str, int] = None, |
| 191 | + issues: Optional[EpiRangeParam] = None, |
| 192 | + lag: Optional[int] = None, |
| 193 | + ) -> CALL_TYPE: |
| 194 | + """Fetch Delphi's COVID-19 Surveillance Streams""" |
| 195 | + return self.call(geo_type, geo_values, time_values, as_of, issues, lag) |
| 196 | + |
| 197 | + |
| 198 | +@dataclass |
| 199 | +class DataSource(Generic[CALL_TYPE]): |
| 200 | + """ |
| 201 | + represents a COVIDcast data source |
| 202 | + """ |
| 203 | + |
| 204 | + _create_call: InitVar[Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE]] |
| 205 | + |
| 206 | + source: str |
| 207 | + db_source: str |
| 208 | + name: str |
| 209 | + description: str |
| 210 | + reference_signal: str |
| 211 | + license: Optional[str] = None |
| 212 | + link: Sequence[WebLink] = field(default_factory=list) |
| 213 | + dua: Optional[str] = None |
| 214 | + |
| 215 | + signals: Sequence[DataSignal] = field(default_factory=list) |
| 216 | + |
| 217 | + def __post_init__( |
| 218 | + self, _create_call: Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE] |
| 219 | + ) -> None: |
| 220 | + self.link = [WebLink(alt=l["alt"], href=l["href"]) if isinstance(l, dict) else l for l in self.link] |
| 221 | + signal_fields = fields(DataSignal) |
| 222 | + self.signals = [ |
| 223 | + DataSignal(_create_call=_create_call, **_limit_fields(s, signal_fields)) if isinstance(s, dict) else s |
| 224 | + for s in self.signals |
| 225 | + ] |
| 226 | + |
| 227 | + @staticmethod |
| 228 | + def to_df(sources: Iterable["DataSource"]) -> DataFrame: |
| 229 | + df = DataFrame( |
| 230 | + sources, |
| 231 | + columns=["source", "name", "description", "reference_signal", "license", "dua"], |
| 232 | + ) |
| 233 | + df["signals"] = [",".join(ss.signal for ss in s.signals) for s in sources] |
| 234 | + return df.set_index("source") |
| 235 | + |
| 236 | + def get_signal(self, signal: str) -> Optional[DataSignal]: |
| 237 | + return next((s for s in self.signals if s.signal == signal), None) |
| 238 | + |
| 239 | + @cached_property |
| 240 | + def signal_df(self) -> DataFrame: |
| 241 | + return DataSignal.to_df(self.signals) |
| 242 | + |
| 243 | + |
| 244 | +@dataclass |
| 245 | +class CovidcastDataSources(Generic[CALL_TYPE]): |
| 246 | + """ |
| 247 | + COVIDcast data source helper |
| 248 | + """ |
| 249 | + |
| 250 | + sources: Sequence[DataSource[CALL_TYPE]] |
| 251 | + _source_by_name: Dict[str, DataSource[CALL_TYPE]] = field(init=False, default_factory=dict) |
| 252 | + _signals_by_key: OrderedDict[Tuple[str, str], DataSignal[CALL_TYPE]] = field( |
| 253 | + init=False, default_factory=OrderedDict |
| 254 | + ) |
| 255 | + |
| 256 | + _create_call: Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE] |
| 257 | + |
| 258 | + def __post_init__(self) -> None: |
| 259 | + self._source_by_name = {s.source: s for s in self.sources} |
| 260 | + for source in self.sources: |
| 261 | + for signal in source.signals: |
| 262 | + self._signals_by_key[signal.key] = signal |
| 263 | + |
| 264 | + def get_source(self, source: str) -> Optional[DataSource[CALL_TYPE]]: |
| 265 | + return self._source_by_name.get(source) |
| 266 | + |
| 267 | + @property |
| 268 | + def source_names(self) -> Iterable[str]: |
| 269 | + return (s.source for s in self.sources) |
| 270 | + |
| 271 | + @cached_property |
| 272 | + def source_df(self) -> DataFrame: |
| 273 | + return DataSource.to_df(self.sources) |
| 274 | + |
| 275 | + @property |
| 276 | + def signals(self) -> Iterable[DataSignal[CALL_TYPE]]: |
| 277 | + return self._signals_by_key.values() |
| 278 | + |
| 279 | + @cached_property |
| 280 | + def signal_df(self) -> DataFrame: |
| 281 | + return DataSignal.to_df(self.signals) |
| 282 | + |
| 283 | + def get_signal(self, source: str, signal: str) -> Optional[DataSignal[CALL_TYPE]]: |
| 284 | + return self._signals_by_key.get((source, signal)) |
| 285 | + |
| 286 | + @property |
| 287 | + def signal_names(self) -> Iterable[Tuple[str, str]]: |
| 288 | + return self._signals_by_key.keys() |
| 289 | + |
| 290 | + def __iter__(self) -> Iterable[DataSource[CALL_TYPE]]: |
| 291 | + return iter(self.sources) |
| 292 | + |
| 293 | + @overload |
| 294 | + def __getitem__(self, source: str) -> DataSource[CALL_TYPE]: |
| 295 | + ... |
| 296 | + |
| 297 | + @overload |
| 298 | + def __getitem__(self, source_signal: Tuple[str, str]) -> DataSignal[CALL_TYPE]: |
| 299 | + ... |
| 300 | + |
| 301 | + def __getitem__( |
| 302 | + self, source_signal: Union[str, Tuple[str, str]] |
| 303 | + ) -> Union[DataSource[CALL_TYPE], DataSignal[CALL_TYPE]]: |
| 304 | + if isinstance(source_signal, str): |
| 305 | + r = self.get_source(source_signal) |
| 306 | + assert r is not None |
| 307 | + return r |
| 308 | + s = self.get_signal(source_signal[0], source_signal[1]) |
| 309 | + assert s is not None |
| 310 | + return s |
| 311 | + |
| 312 | + @staticmethod |
| 313 | + def create( |
| 314 | + meta: List[Dict], |
| 315 | + create_call: Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE], |
| 316 | + ) -> "CovidcastDataSources": |
| 317 | + source_fields = fields(DataSource) |
| 318 | + sources = [DataSource(_create_call=create_call, **_limit_fields(k, source_fields)) for k in meta] |
| 319 | + return CovidcastDataSources(sources, create_call) |
0 commit comments