diff --git a/.bumpversion.cfg b/.bumpversion.cfg index 2f6f9c3cc..eab00a657 100644 --- a/.bumpversion.cfg +++ b/.bumpversion.cfg @@ -1,5 +1,5 @@ [bumpversion] -current_version = 0.3.37 +current_version = 0.3.38 commit = True message = chore: bump covidcast-indicators to {new_version} tag = False diff --git a/_delphi_utils_python/.bumpversion.cfg b/_delphi_utils_python/.bumpversion.cfg index f0b715186..9fe154574 100644 --- a/_delphi_utils_python/.bumpversion.cfg +++ b/_delphi_utils_python/.bumpversion.cfg @@ -1,5 +1,5 @@ [bumpversion] -current_version = 0.3.14 +current_version = 0.3.15 commit = True message = chore: bump delphi_utils to {new_version} tag = False diff --git a/_delphi_utils_python/data_proc/geomap/README.md b/_delphi_utils_python/data_proc/geomap/README.md index 84fdbefb2..08075fff9 100644 --- a/_delphi_utils_python/data_proc/geomap/README.md +++ b/_delphi_utils_python/data_proc/geomap/README.md @@ -24,7 +24,7 @@ We support the following geocodes. - We are reserving 10001-10099 for states codes of the form 100XX where XX is the FIPS code for the state (the current smallest CBSA is 10100). In the case that the CBSA codes change then it should be verified that these are not used. - State codes are a series of equivalent identifiers for US state. They include the state name, the state number (state_id), and the state two-letter abbreviation (state_code). The state number is the state FIPS code. See [here](https://en.wikipedia.org/wiki/List_of_U.S._state_and_territory_abbreviations) for more. - The Hospital Referral Region (HRR) and the Hospital Service Area (HSA). More information [here](https://www.dartmouthatlas.org/covid-19/hrr-mapping/). -- The JHU signal contains its own geographic identifier, labeled the UID. Documentation is provided at [their repo](https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data#uid-lookup-table-logic). Its FIPS codes depart in some special cases, so we produce manual changes listed below. +FIPS codes depart in some special cases, so we produce manual changes listed below. ## Source files @@ -34,20 +34,13 @@ The source files are requested from a government URL when `geo_data_proc.py` is - ZIP -> HRR -> HSA crosswalk file comes from the 2018 version at the [Dartmouth Atlas Project](https://atlasdata.dartmouth.edu/static/supp_research_data). - FIPS -> MSA crosswalk file comes from the September 2018 version of the delineation files at the [US Census Bureau](https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html). - State Code -> State ID -> State Name comes from the ANSI standard at the [US Census](https://www.census.gov/library/reference/code-lists/ansi.html#par_textimage_3). The first two digits of a FIPS codes should match the state code here. -- JHU UID -> FIPS comes from [the JHU documentation](https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data#uid-lookup-table-logic). We have to do some hand modifications to the JHU UID because the mapping to FIPS isn't always consistent. + ## Derived files The rest of the crosswalk tables are derived from the mappings above. We provide crosswalk functions from granular to coarser codes, but not the other way around. This is because there is no information gained when crosswalking from coarse to granular. -## JHU UID mapping changes -- Dukes and Nantucket counties in Massachusets are aggregated, so we split them with population-proportional weights (approximately 2/3 Dukes and 1/3 Nantucket). -- The same procedure is followed by Kansas City and four of its counties. -- Kusilvak, Alaska is mapped to the FIPS code 02270. -- Ogalala Lakota, South Dakota is mapped to the FIPS code 46113. -- Utah reports at a territory level, so we only report it at in a state level megaFIPS 49000. -- JHU places cases and deaths that cannot be localized to a single county into "Out of State" and "Unassigned" categories. We map these to the "megaFIPS" code XX000, where XX is the state FIPS code. This way, the data is recovered when aggregating up to the state level, but does not interfere with other counties. ## Deprecated source files @@ -55,7 +48,6 @@ The rest of the crosswalk tables are derived from the mappings above. We provide - The `02_20_uszips.csv` file is based on the newest consensus data including 5-digit zipcode, fips code, county name, state, population, HRR, HSA (I downloaded the original file from [here](https://simplemaps.com/data/us-zips). This file matches best to the most recent (2020) situation in terms of the population. But there still exist some matching problems. I manually checked and corrected those lines (~20) with [zip-codes](https://www.zip-codes.com/zip-code/58439/zip-code-58439.asp). The mapping from 5-digit zipcode to HRR is based on the file in 2017 version downloaded from [here](https://atlasdata.dartmouth.edu/static/supp_research_data). - ZIP -> FIPS is provided by [huduser.gov](https://www.huduser.gov/portal/datasets/usps_crosswalk.html) for zip -> fips? - FIPS county population data from [US Census Bureau](http://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html). Details of Bedford, Virginia counting [here](https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.html). -- JHU UID crosswalk table [here](https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data#uid-lookup-table-logic) - CBSA -> FIPS crosswalk from [here](https://data.nber.org/data/cbsa-fips-county-crosswalk.html) (the file is `cbsatocountycrosswalk.csv`). - MSA tables from March 2020 [here](https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html). This file seems to differ in a few fips codes from the source for the 02_20_uszip file which Jingjing constructed. There are at least 10 additional fips in 03_20_msa that are not in the uszip file, and one of the msa codes seems to be incorrect: 49020 (a google search confirms that it is incorrect in uszip and correct in the census data). - MSA tables from 2019 [here](https://apps.bea.gov/regional/docs/msalist.cfm) diff --git a/_delphi_utils_python/data_proc/geomap/geo_data_proc.py b/_delphi_utils_python/data_proc/geomap/geo_data_proc.py index d51f9b551..287667812 100755 --- a/_delphi_utils_python/data_proc/geomap/geo_data_proc.py +++ b/_delphi_utils_python/data_proc/geomap/geo_data_proc.py @@ -27,7 +27,6 @@ ZIP_HSA_HRR_URL = "https://atlasdata.dartmouth.edu/downloads/geography/ZipHsaHrr18.csv.zip" ZIP_HSA_HRR_FILENAME = "ZipHsaHrr18.csv" FIPS_MSA_URL = "https://www2.census.gov/programs-surveys/metro-micro/geographies/reference-files/2018/delineation-files/list1_Sep_2018.xls" -JHU_FIPS_URL = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/UID_ISO_FIPS_LookUp_Table.csv" STATE_CODES_URL = "http://www2.census.gov/geo/docs/reference/state.txt?#" FIPS_POPULATION_URL = f"https://www2.census.gov/programs-surveys/popest/datasets/2010-{YEAR}/counties/totals/co-est{YEAR}-alldata.csv" FIPS_PUERTO_RICO_POPULATION_URL = "https://www2.census.gov/geo/docs/maps-data/data/rel/zcta_county_rel_10.txt?" @@ -57,7 +56,6 @@ STATE_POPULATION_OUT_FILENAME = "state_pop.csv" HHS_POPULATION_OUT_FILENAME = "hhs_pop.csv" NATION_POPULATION_OUT_FILENAME = "nation_pop.csv" -JHU_FIPS_OUT_FILENAME = "jhu_uid_fips_table.csv" def create_fips_zip_crosswalk(): @@ -111,101 +109,6 @@ def create_fips_msa_crosswalk(): msa_df.sort_values(["fips", "msa"]).to_csv(join(OUTPUT_DIR, FIPS_MSA_OUT_FILENAME), columns=["fips", "msa"], index=False) -def create_jhu_uid_fips_crosswalk(): - """Build a crosswalk table from JHU UID to FIPS.""" - # These are hand modifications that need to be made to the translation - # between JHU UID and FIPS. See below for the special cases information - # https://cmu-delphi.github.io/delphi-epidata/api/covidcast-signals/jhu-csse.html#geographical-exceptions - hand_additions = pd.DataFrame( - [ - { - "jhu_uid": "84070002", - "fips": "25007", # Split aggregation of Dukes and Nantucket, Massachusetts - "weight": 16535 / (16535 + 10172), # Population: 16535 - }, - { - "jhu_uid": "84070002", - "fips": "25019", - "weight": 10172 / (16535 + 10172), # Population: 10172 - }, - { - "jhu_uid": "84070003", - "fips": "29095", # Kansas City, Missouri - "weight": 674158 / 1084897, # Population: 674158 - }, - { - "jhu_uid": "84070003", - "fips": "29165", - "weight": 89322 / 1084897, # Population: 89322 - }, - { - "jhu_uid": "84070003", - "fips": "29037", - "weight": 99478 / 1084897, # Population: 99478 - }, - { - "jhu_uid": "84070003", - "fips": "29047", - "weight": 221939 / 1084897, # Population: 221939 - }, - # Kusilvak, Alaska - {"jhu_uid": "84002158", "fips": "02270", "weight": 1.0}, - # Oglala Lakota - {"jhu_uid": "84046102", "fips": "46113", "weight": 1.0}, - # Aggregate Utah territories into a "State FIPS" - {"jhu_uid": "84070015", "fips": "49000", "weight": 1.0}, - {"jhu_uid": "84070016", "fips": "49000", "weight": 1.0}, - {"jhu_uid": "84070017", "fips": "49000", "weight": 1.0}, - {"jhu_uid": "84070018", "fips": "49000", "weight": 1.0}, - {"jhu_uid": "84070019", "fips": "49000", "weight": 1.0}, - {"jhu_uid": "84070020", "fips": "49000", "weight": 1.0}, - ] - ) - # Map the Unassigned category to a custom megaFIPS XX000 - unassigned_states = pd.DataFrame( - {"jhu_uid": str(x), "fips": str(x)[-2:].ljust(5, "0"), "weight": 1.0} - for x in range(84090001, 84090057) - ) - # Map the Out of State category to a custom megaFIPS XX000 - out_of_state = pd.DataFrame( - {"jhu_uid": str(x), "fips": str(x)[-2:].ljust(5, "0"), "weight": 1.0} - for x in range(84080001, 84080057) - ) - # Map the Unassigned and Out of State categories to the cusom megaFIPS 72000 - puerto_rico_unassigned = pd.DataFrame( - [ - {"jhu_uid": "63072888", "fips": "72000", "weight": 1.0}, - {"jhu_uid": "63072999", "fips": "72000", "weight": 1.0}, - ] - ) - cruise_ships = pd.DataFrame( - [ - {"jhu_uid": "84088888", "fips": "88888", "weight": 1.0}, - {"jhu_uid": "84099999", "fips": "99999", "weight": 1.0}, - ] - ) - - - jhu_df = pd.read_csv(JHU_FIPS_URL, dtype={"UID": str, "FIPS": str}).query("Country_Region == 'US'") - jhu_df = jhu_df.rename(columns={"UID": "jhu_uid", "FIPS": "fips"}).dropna(subset=["fips"]) - - # FIPS Codes that are just two digits long should be zero filled on the right. - # These are US state codes (XX) and the territories Guam (66), Northern Mariana Islands (69), - # Virgin Islands (78), and Puerto Rico (72). - fips_territories = jhu_df["fips"].str.len() <= 2 - jhu_df.loc[fips_territories, "fips"] = jhu_df.loc[fips_territories, "fips"].str.ljust(5, "0") - - # Drop the JHU UIDs that were hand-modified - manual_correction_ids = pd.concat([hand_additions, unassigned_states, out_of_state, puerto_rico_unassigned, cruise_ships])["jhu_uid"] - jhu_df.drop(jhu_df.index[jhu_df["jhu_uid"].isin(manual_correction_ids)], inplace=True) - - # Add weights of 1.0 to everything not in hand additions, then merge in hand-additions - # Finally, zero fill FIPS - jhu_df["weight"] = 1.0 - jhu_df = pd.concat([jhu_df, hand_additions, unassigned_states, out_of_state, puerto_rico_unassigned]) - jhu_df["fips"] = jhu_df["fips"].astype(int).astype(str).str.zfill(5) - jhu_df.sort_values(["jhu_uid", "fips"]).to_csv(join(OUTPUT_DIR, JHU_FIPS_OUT_FILENAME), columns=["jhu_uid", "fips", "weight"], index=False) - def create_state_codes_crosswalk(): """Build a State ID -> State Name -> State code crosswalk file.""" @@ -659,7 +562,6 @@ def clear_dir(dir_path: str): create_fips_zip_crosswalk() create_zip_hsa_hrr_crosswalk() create_fips_msa_crosswalk() - create_jhu_uid_fips_crosswalk() create_state_codes_crosswalk() create_state_hhs_crosswalk() create_fips_population_table() diff --git a/_delphi_utils_python/delphi_utils/__init__.py b/_delphi_utils_python/delphi_utils/__init__.py index 3a9667a2f..c1bbfca0a 100644 --- a/_delphi_utils_python/delphi_utils/__init__.py +++ b/_delphi_utils_python/delphi_utils/__init__.py @@ -15,4 +15,4 @@ from .nancodes import Nans from .weekday import Weekday -__version__ = "0.3.14" +__version__ = "0.3.15" diff --git a/_delphi_utils_python/delphi_utils/data/2019/jhu_uid_fips_table.csv b/_delphi_utils_python/delphi_utils/data/2019/jhu_uid_fips_table.csv deleted file mode 100644 index 4260c1f6b..000000000 --- a/_delphi_utils_python/delphi_utils/data/2019/jhu_uid_fips_table.csv +++ /dev/null @@ -1,3405 +0,0 @@ -jhu_uid,fips,weight -16,60000,1.0 -316,66000,1.0 -580,69000,1.0 -630,72000,1.0 -63072001,72001,1.0 -63072003,72003,1.0 -63072005,72005,1.0 -63072007,72007,1.0 -63072009,72009,1.0 -63072011,72011,1.0 -63072013,72013,1.0 -63072015,72015,1.0 -63072017,72017,1.0 -63072019,72019,1.0 -63072021,72021,1.0 -63072023,72023,1.0 -63072025,72025,1.0 -63072027,72027,1.0 -63072029,72029,1.0 -63072031,72031,1.0 -63072033,72033,1.0 -63072035,72035,1.0 -63072037,72037,1.0 -63072039,72039,1.0 -63072041,72041,1.0 -63072043,72043,1.0 -63072045,72045,1.0 -63072047,72047,1.0 -63072049,72049,1.0 -63072051,72051,1.0 -63072053,72053,1.0 -63072054,72054,1.0 -63072055,72055,1.0 -63072057,72057,1.0 -63072059,72059,1.0 -63072061,72061,1.0 -63072063,72063,1.0 -63072065,72065,1.0 -63072067,72067,1.0 -63072069,72069,1.0 -63072071,72071,1.0 -63072073,72073,1.0 -63072075,72075,1.0 -63072077,72077,1.0 -63072079,72079,1.0 -63072081,72081,1.0 -63072083,72083,1.0 -63072085,72085,1.0 -63072087,72087,1.0 -63072089,72089,1.0 -63072091,72091,1.0 -63072093,72093,1.0 -63072095,72095,1.0 -63072097,72097,1.0 -63072099,72099,1.0 -63072101,72101,1.0 -63072103,72103,1.0 -63072105,72105,1.0 -63072107,72107,1.0 -63072109,72109,1.0 -63072111,72111,1.0 -63072113,72113,1.0 -63072115,72115,1.0 -63072117,72117,1.0 -63072119,72119,1.0 -63072121,72121,1.0 -63072123,72123,1.0 -63072125,72125,1.0 -63072127,72127,1.0 -63072129,72129,1.0 -63072131,72131,1.0 -63072133,72133,1.0 -63072135,72135,1.0 -63072137,72137,1.0 -63072139,72139,1.0 -63072141,72141,1.0 -63072143,72143,1.0 -63072145,72145,1.0 -63072147,72147,1.0 -63072149,72149,1.0 -63072151,72151,1.0 -63072153,72153,1.0 -63072888,72000,1.0 -63072999,72000,1.0 -84000001,01000,1.0 -84000002,02000,1.0 -84000004,04000,1.0 -84000005,05000,1.0 -84000006,06000,1.0 -84000008,08000,1.0 -84000009,09000,1.0 -84000010,10000,1.0 -84000011,11000,1.0 -84000012,12000,1.0 -84000013,13000,1.0 -84000015,15000,1.0 -84000016,16000,1.0 -84000017,17000,1.0 -84000018,18000,1.0 -84000019,19000,1.0 -84000020,20000,1.0 -84000021,21000,1.0 -84000022,22000,1.0 -84000023,23000,1.0 -84000024,24000,1.0 -84000025,25000,1.0 -84000026,26000,1.0 -84000027,27000,1.0 -84000028,28000,1.0 -84000029,29000,1.0 -84000030,30000,1.0 -84000031,31000,1.0 -84000032,32000,1.0 -84000033,33000,1.0 -84000034,34000,1.0 -84000035,35000,1.0 -84000036,36000,1.0 -84000037,37000,1.0 -84000038,38000,1.0 -84000039,39000,1.0 -84000040,40000,1.0 -84000041,41000,1.0 -84000042,42000,1.0 -84000044,44000,1.0 -84000045,45000,1.0 -84000046,46000,1.0 -84000047,47000,1.0 -84000048,48000,1.0 -84000049,49000,1.0 -84000050,50000,1.0 -84000051,51000,1.0 -84000053,53000,1.0 -84000054,54000,1.0 -84000055,55000,1.0 -84000056,56000,1.0 -84001001,01001,1.0 -84001003,01003,1.0 -84001005,01005,1.0 -84001007,01007,1.0 -84001009,01009,1.0 -84001011,01011,1.0 -84001013,01013,1.0 -84001015,01015,1.0 -84001017,01017,1.0 -84001019,01019,1.0 -84001021,01021,1.0 -84001023,01023,1.0 -84001025,01025,1.0 -84001027,01027,1.0 -84001029,01029,1.0 -84001031,01031,1.0 -84001033,01033,1.0 -84001035,01035,1.0 -84001037,01037,1.0 -84001039,01039,1.0 -84001041,01041,1.0 -84001043,01043,1.0 -84001045,01045,1.0 -84001047,01047,1.0 -84001049,01049,1.0 -84001051,01051,1.0 -84001053,01053,1.0 -84001055,01055,1.0 -84001057,01057,1.0 -84001059,01059,1.0 -84001061,01061,1.0 -84001063,01063,1.0 -84001065,01065,1.0 -84001067,01067,1.0 -84001069,01069,1.0 -84001071,01071,1.0 -84001073,01073,1.0 -84001075,01075,1.0 -84001077,01077,1.0 -84001079,01079,1.0 -84001081,01081,1.0 -84001083,01083,1.0 -84001085,01085,1.0 -84001087,01087,1.0 -84001089,01089,1.0 -84001091,01091,1.0 -84001093,01093,1.0 -84001095,01095,1.0 -84001097,01097,1.0 -84001099,01099,1.0 -84001101,01101,1.0 -84001103,01103,1.0 -84001105,01105,1.0 -84001107,01107,1.0 -84001109,01109,1.0 -84001111,01111,1.0 -84001113,01113,1.0 -84001115,01115,1.0 -84001117,01117,1.0 -84001119,01119,1.0 -84001121,01121,1.0 -84001123,01123,1.0 -84001125,01125,1.0 -84001127,01127,1.0 -84001129,01129,1.0 -84001131,01131,1.0 -84001133,01133,1.0 -84002013,02013,1.0 -84002016,02016,1.0 -84002020,02020,1.0 -84002050,02050,1.0 -84002060,02060,1.0 -84002063,02063,1.0 -84002066,02066,1.0 -84002068,02068,1.0 -84002070,02070,1.0 -84002090,02090,1.0 -84002100,02100,1.0 -84002105,02105,1.0 -84002110,02110,1.0 -84002122,02122,1.0 -84002130,02130,1.0 -84002150,02150,1.0 -84002158,02270,1.0 -84002164,02164,1.0 -84002170,02170,1.0 -84002180,02180,1.0 -84002185,02185,1.0 -84002188,02188,1.0 -84002195,02195,1.0 -84002198,02198,1.0 -84002220,02220,1.0 -84002230,02230,1.0 -84002240,02240,1.0 -84002261,02261,1.0 -84002275,02275,1.0 -84002282,02282,1.0 -84002290,02290,1.0 -84004001,04001,1.0 -84004003,04003,1.0 -84004005,04005,1.0 -84004007,04007,1.0 -84004009,04009,1.0 -84004011,04011,1.0 -84004012,04012,1.0 -84004013,04013,1.0 -84004015,04015,1.0 -84004017,04017,1.0 -84004019,04019,1.0 -84004021,04021,1.0 -84004023,04023,1.0 -84004025,04025,1.0 -84004027,04027,1.0 -84005001,05001,1.0 -84005003,05003,1.0 -84005005,05005,1.0 -84005007,05007,1.0 -84005009,05009,1.0 -84005011,05011,1.0 -84005013,05013,1.0 -84005015,05015,1.0 -84005017,05017,1.0 -84005019,05019,1.0 -84005021,05021,1.0 -84005023,05023,1.0 -84005025,05025,1.0 -84005027,05027,1.0 -84005029,05029,1.0 -84005031,05031,1.0 -84005033,05033,1.0 -84005035,05035,1.0 -84005037,05037,1.0 -84005039,05039,1.0 -84005041,05041,1.0 -84005043,05043,1.0 -84005045,05045,1.0 -84005047,05047,1.0 -84005049,05049,1.0 -84005051,05051,1.0 -84005053,05053,1.0 -84005055,05055,1.0 -84005057,05057,1.0 -84005059,05059,1.0 -84005061,05061,1.0 -84005063,05063,1.0 -84005065,05065,1.0 -84005067,05067,1.0 -84005069,05069,1.0 -84005071,05071,1.0 -84005073,05073,1.0 -84005075,05075,1.0 -84005077,05077,1.0 -84005079,05079,1.0 -84005081,05081,1.0 -84005083,05083,1.0 -84005085,05085,1.0 -84005087,05087,1.0 -84005089,05089,1.0 -84005091,05091,1.0 -84005093,05093,1.0 -84005095,05095,1.0 -84005097,05097,1.0 -84005099,05099,1.0 -84005101,05101,1.0 -84005103,05103,1.0 -84005105,05105,1.0 -84005107,05107,1.0 -84005109,05109,1.0 -84005111,05111,1.0 -84005113,05113,1.0 -84005115,05115,1.0 -84005117,05117,1.0 -84005119,05119,1.0 -84005121,05121,1.0 -84005123,05123,1.0 -84005125,05125,1.0 -84005127,05127,1.0 -84005129,05129,1.0 -84005131,05131,1.0 -84005133,05133,1.0 -84005135,05135,1.0 -84005137,05137,1.0 -84005139,05139,1.0 -84005141,05141,1.0 -84005143,05143,1.0 -84005145,05145,1.0 -84005147,05147,1.0 -84005149,05149,1.0 -84006001,06001,1.0 -84006003,06003,1.0 -84006005,06005,1.0 -84006007,06007,1.0 -84006009,06009,1.0 -84006011,06011,1.0 -84006013,06013,1.0 -84006015,06015,1.0 -84006017,06017,1.0 -84006019,06019,1.0 -84006021,06021,1.0 -84006023,06023,1.0 -84006025,06025,1.0 -84006027,06027,1.0 -84006029,06029,1.0 -84006031,06031,1.0 -84006033,06033,1.0 -84006035,06035,1.0 -84006037,06037,1.0 -84006039,06039,1.0 -84006041,06041,1.0 -84006043,06043,1.0 -84006045,06045,1.0 -84006047,06047,1.0 -84006049,06049,1.0 -84006051,06051,1.0 -84006053,06053,1.0 -84006055,06055,1.0 -84006057,06057,1.0 -84006059,06059,1.0 -84006061,06061,1.0 -84006063,06063,1.0 -84006065,06065,1.0 -84006067,06067,1.0 -84006069,06069,1.0 -84006071,06071,1.0 -84006073,06073,1.0 -84006075,06075,1.0 -84006077,06077,1.0 -84006079,06079,1.0 -84006081,06081,1.0 -84006083,06083,1.0 -84006085,06085,1.0 -84006087,06087,1.0 -84006089,06089,1.0 -84006091,06091,1.0 -84006093,06093,1.0 -84006095,06095,1.0 -84006097,06097,1.0 -84006099,06099,1.0 -84006101,06101,1.0 -84006103,06103,1.0 -84006105,06105,1.0 -84006107,06107,1.0 -84006109,06109,1.0 -84006111,06111,1.0 -84006113,06113,1.0 -84006115,06115,1.0 -84008001,08001,1.0 -84008003,08003,1.0 -84008005,08005,1.0 -84008007,08007,1.0 -84008009,08009,1.0 -84008011,08011,1.0 -84008013,08013,1.0 -84008014,08014,1.0 -84008015,08015,1.0 -84008017,08017,1.0 -84008019,08019,1.0 -84008021,08021,1.0 -84008023,08023,1.0 -84008025,08025,1.0 -84008027,08027,1.0 -84008029,08029,1.0 -84008031,08031,1.0 -84008033,08033,1.0 -84008035,08035,1.0 -84008037,08037,1.0 -84008039,08039,1.0 -84008041,08041,1.0 -84008043,08043,1.0 -84008045,08045,1.0 -84008047,08047,1.0 -84008049,08049,1.0 -84008051,08051,1.0 -84008053,08053,1.0 -84008055,08055,1.0 -84008057,08057,1.0 -84008059,08059,1.0 -84008061,08061,1.0 -84008063,08063,1.0 -84008065,08065,1.0 -84008067,08067,1.0 -84008069,08069,1.0 -84008071,08071,1.0 -84008073,08073,1.0 -84008075,08075,1.0 -84008077,08077,1.0 -84008079,08079,1.0 -84008081,08081,1.0 -84008083,08083,1.0 -84008085,08085,1.0 -84008087,08087,1.0 -84008089,08089,1.0 -84008091,08091,1.0 -84008093,08093,1.0 -84008095,08095,1.0 -84008097,08097,1.0 -84008099,08099,1.0 -84008101,08101,1.0 -84008103,08103,1.0 -84008105,08105,1.0 -84008107,08107,1.0 -84008109,08109,1.0 -84008111,08111,1.0 -84008113,08113,1.0 -84008115,08115,1.0 -84008117,08117,1.0 -84008119,08119,1.0 -84008121,08121,1.0 -84008123,08123,1.0 -84008125,08125,1.0 -84009001,09001,1.0 -84009003,09003,1.0 -84009005,09005,1.0 -84009007,09007,1.0 -84009009,09009,1.0 -84009011,09011,1.0 -84009013,09013,1.0 -84009015,09015,1.0 -84010001,10001,1.0 -84010003,10003,1.0 -84010005,10005,1.0 -84011001,11001,1.0 -84012001,12001,1.0 -84012003,12003,1.0 -84012005,12005,1.0 -84012007,12007,1.0 -84012009,12009,1.0 -84012011,12011,1.0 -84012013,12013,1.0 -84012015,12015,1.0 -84012017,12017,1.0 -84012019,12019,1.0 -84012021,12021,1.0 -84012023,12023,1.0 -84012027,12027,1.0 -84012029,12029,1.0 -84012031,12031,1.0 -84012033,12033,1.0 -84012035,12035,1.0 -84012037,12037,1.0 -84012039,12039,1.0 -84012041,12041,1.0 -84012043,12043,1.0 -84012045,12045,1.0 -84012047,12047,1.0 -84012049,12049,1.0 -84012051,12051,1.0 -84012053,12053,1.0 -84012055,12055,1.0 -84012057,12057,1.0 -84012059,12059,1.0 -84012061,12061,1.0 -84012063,12063,1.0 -84012065,12065,1.0 -84012067,12067,1.0 -84012069,12069,1.0 -84012071,12071,1.0 -84012073,12073,1.0 -84012075,12075,1.0 -84012077,12077,1.0 -84012079,12079,1.0 -84012081,12081,1.0 -84012083,12083,1.0 -84012085,12085,1.0 -84012086,12086,1.0 -84012087,12087,1.0 -84012089,12089,1.0 -84012091,12091,1.0 -84012093,12093,1.0 -84012095,12095,1.0 -84012097,12097,1.0 -84012099,12099,1.0 -84012101,12101,1.0 -84012103,12103,1.0 -84012105,12105,1.0 -84012107,12107,1.0 -84012109,12109,1.0 -84012111,12111,1.0 -84012113,12113,1.0 -84012115,12115,1.0 -84012117,12117,1.0 -84012119,12119,1.0 -84012121,12121,1.0 -84012123,12123,1.0 -84012125,12125,1.0 -84012127,12127,1.0 -84012129,12129,1.0 -84012131,12131,1.0 -84012133,12133,1.0 -84013001,13001,1.0 -84013003,13003,1.0 -84013005,13005,1.0 -84013007,13007,1.0 -84013009,13009,1.0 -84013011,13011,1.0 -84013013,13013,1.0 -84013015,13015,1.0 -84013017,13017,1.0 -84013019,13019,1.0 -84013021,13021,1.0 -84013023,13023,1.0 -84013025,13025,1.0 -84013027,13027,1.0 -84013029,13029,1.0 -84013031,13031,1.0 -84013033,13033,1.0 -84013035,13035,1.0 -84013037,13037,1.0 -84013039,13039,1.0 -84013043,13043,1.0 -84013045,13045,1.0 -84013047,13047,1.0 -84013049,13049,1.0 -84013051,13051,1.0 -84013053,13053,1.0 -84013055,13055,1.0 -84013057,13057,1.0 -84013059,13059,1.0 -84013061,13061,1.0 -84013063,13063,1.0 -84013065,13065,1.0 -84013067,13067,1.0 -84013069,13069,1.0 -84013071,13071,1.0 -84013073,13073,1.0 -84013075,13075,1.0 -84013077,13077,1.0 -84013079,13079,1.0 -84013081,13081,1.0 -84013083,13083,1.0 -84013085,13085,1.0 -84013087,13087,1.0 -84013089,13089,1.0 -84013091,13091,1.0 -84013093,13093,1.0 -84013095,13095,1.0 -84013097,13097,1.0 -84013099,13099,1.0 -84013101,13101,1.0 -84013103,13103,1.0 -84013105,13105,1.0 -84013107,13107,1.0 -84013109,13109,1.0 -84013111,13111,1.0 -84013113,13113,1.0 -84013115,13115,1.0 -84013117,13117,1.0 -84013119,13119,1.0 -84013121,13121,1.0 -84013123,13123,1.0 -84013125,13125,1.0 -84013127,13127,1.0 -84013129,13129,1.0 -84013131,13131,1.0 -84013133,13133,1.0 -84013135,13135,1.0 -84013137,13137,1.0 -84013139,13139,1.0 -84013141,13141,1.0 -84013143,13143,1.0 -84013145,13145,1.0 -84013147,13147,1.0 -84013149,13149,1.0 -84013151,13151,1.0 -84013153,13153,1.0 -84013155,13155,1.0 -84013157,13157,1.0 -84013159,13159,1.0 -84013161,13161,1.0 -84013163,13163,1.0 -84013165,13165,1.0 -84013167,13167,1.0 -84013169,13169,1.0 -84013171,13171,1.0 -84013173,13173,1.0 -84013175,13175,1.0 -84013177,13177,1.0 -84013179,13179,1.0 -84013181,13181,1.0 -84013183,13183,1.0 -84013185,13185,1.0 -84013187,13187,1.0 -84013189,13189,1.0 -84013191,13191,1.0 -84013193,13193,1.0 -84013195,13195,1.0 -84013197,13197,1.0 -84013199,13199,1.0 -84013201,13201,1.0 -84013205,13205,1.0 -84013207,13207,1.0 -84013209,13209,1.0 -84013211,13211,1.0 -84013213,13213,1.0 -84013215,13215,1.0 -84013217,13217,1.0 -84013219,13219,1.0 -84013221,13221,1.0 -84013223,13223,1.0 -84013225,13225,1.0 -84013227,13227,1.0 -84013229,13229,1.0 -84013231,13231,1.0 -84013233,13233,1.0 -84013235,13235,1.0 -84013237,13237,1.0 -84013239,13239,1.0 -84013241,13241,1.0 -84013243,13243,1.0 -84013245,13245,1.0 -84013247,13247,1.0 -84013249,13249,1.0 -84013251,13251,1.0 -84013253,13253,1.0 -84013255,13255,1.0 -84013257,13257,1.0 -84013259,13259,1.0 -84013261,13261,1.0 -84013263,13263,1.0 -84013265,13265,1.0 -84013267,13267,1.0 -84013269,13269,1.0 -84013271,13271,1.0 -84013273,13273,1.0 -84013275,13275,1.0 -84013277,13277,1.0 -84013279,13279,1.0 -84013281,13281,1.0 -84013283,13283,1.0 -84013285,13285,1.0 -84013287,13287,1.0 -84013289,13289,1.0 -84013291,13291,1.0 -84013293,13293,1.0 -84013295,13295,1.0 -84013297,13297,1.0 -84013299,13299,1.0 -84013301,13301,1.0 -84013303,13303,1.0 -84013305,13305,1.0 -84013307,13307,1.0 -84013309,13309,1.0 -84013311,13311,1.0 -84013313,13313,1.0 -84013315,13315,1.0 -84013317,13317,1.0 -84013319,13319,1.0 -84013321,13321,1.0 -84015001,15001,1.0 -84015003,15003,1.0 -84015005,15005,1.0 -84015007,15007,1.0 -84015009,15009,1.0 -84016001,16001,1.0 -84016003,16003,1.0 -84016005,16005,1.0 -84016007,16007,1.0 -84016009,16009,1.0 -84016011,16011,1.0 -84016013,16013,1.0 -84016015,16015,1.0 -84016017,16017,1.0 -84016019,16019,1.0 -84016021,16021,1.0 -84016023,16023,1.0 -84016025,16025,1.0 -84016027,16027,1.0 -84016029,16029,1.0 -84016031,16031,1.0 -84016033,16033,1.0 -84016035,16035,1.0 -84016037,16037,1.0 -84016039,16039,1.0 -84016041,16041,1.0 -84016043,16043,1.0 -84016045,16045,1.0 -84016047,16047,1.0 -84016049,16049,1.0 -84016051,16051,1.0 -84016053,16053,1.0 -84016055,16055,1.0 -84016057,16057,1.0 -84016059,16059,1.0 -84016061,16061,1.0 -84016063,16063,1.0 -84016065,16065,1.0 -84016067,16067,1.0 -84016069,16069,1.0 -84016071,16071,1.0 -84016073,16073,1.0 -84016075,16075,1.0 -84016077,16077,1.0 -84016079,16079,1.0 -84016081,16081,1.0 -84016083,16083,1.0 -84016085,16085,1.0 -84016087,16087,1.0 -84017001,17001,1.0 -84017003,17003,1.0 -84017005,17005,1.0 -84017007,17007,1.0 -84017009,17009,1.0 -84017011,17011,1.0 -84017013,17013,1.0 -84017015,17015,1.0 -84017017,17017,1.0 -84017019,17019,1.0 -84017021,17021,1.0 -84017023,17023,1.0 -84017025,17025,1.0 -84017027,17027,1.0 -84017029,17029,1.0 -84017031,17031,1.0 -84017033,17033,1.0 -84017035,17035,1.0 -84017037,17037,1.0 -84017039,17039,1.0 -84017041,17041,1.0 -84017043,17043,1.0 -84017045,17045,1.0 -84017047,17047,1.0 -84017049,17049,1.0 -84017051,17051,1.0 -84017053,17053,1.0 -84017055,17055,1.0 -84017057,17057,1.0 -84017059,17059,1.0 -84017061,17061,1.0 -84017063,17063,1.0 -84017065,17065,1.0 -84017067,17067,1.0 -84017069,17069,1.0 -84017071,17071,1.0 -84017073,17073,1.0 -84017075,17075,1.0 -84017077,17077,1.0 -84017079,17079,1.0 -84017081,17081,1.0 -84017083,17083,1.0 -84017085,17085,1.0 -84017087,17087,1.0 -84017089,17089,1.0 -84017091,17091,1.0 -84017093,17093,1.0 -84017095,17095,1.0 -84017097,17097,1.0 -84017099,17099,1.0 -84017101,17101,1.0 -84017103,17103,1.0 -84017105,17105,1.0 -84017107,17107,1.0 -84017109,17109,1.0 -84017111,17111,1.0 -84017113,17113,1.0 -84017115,17115,1.0 -84017117,17117,1.0 -84017119,17119,1.0 -84017121,17121,1.0 -84017123,17123,1.0 -84017125,17125,1.0 -84017127,17127,1.0 -84017129,17129,1.0 -84017131,17131,1.0 -84017133,17133,1.0 -84017135,17135,1.0 -84017137,17137,1.0 -84017139,17139,1.0 -84017141,17141,1.0 -84017143,17143,1.0 -84017145,17145,1.0 -84017147,17147,1.0 -84017149,17149,1.0 -84017151,17151,1.0 -84017153,17153,1.0 -84017155,17155,1.0 -84017157,17157,1.0 -84017159,17159,1.0 -84017161,17161,1.0 -84017163,17163,1.0 -84017165,17165,1.0 -84017167,17167,1.0 -84017169,17169,1.0 -84017171,17171,1.0 -84017173,17173,1.0 -84017175,17175,1.0 -84017177,17177,1.0 -84017179,17179,1.0 -84017181,17181,1.0 -84017183,17183,1.0 -84017185,17185,1.0 -84017187,17187,1.0 -84017189,17189,1.0 -84017191,17191,1.0 -84017193,17193,1.0 -84017195,17195,1.0 -84017197,17197,1.0 -84017199,17199,1.0 -84017201,17201,1.0 -84017203,17203,1.0 -84018001,18001,1.0 -84018003,18003,1.0 -84018005,18005,1.0 -84018007,18007,1.0 -84018009,18009,1.0 -84018011,18011,1.0 -84018013,18013,1.0 -84018015,18015,1.0 -84018017,18017,1.0 -84018019,18019,1.0 -84018021,18021,1.0 -84018023,18023,1.0 -84018025,18025,1.0 -84018027,18027,1.0 -84018029,18029,1.0 -84018031,18031,1.0 -84018033,18033,1.0 -84018035,18035,1.0 -84018037,18037,1.0 -84018039,18039,1.0 -84018041,18041,1.0 -84018043,18043,1.0 -84018045,18045,1.0 -84018047,18047,1.0 -84018049,18049,1.0 -84018051,18051,1.0 -84018053,18053,1.0 -84018055,18055,1.0 -84018057,18057,1.0 -84018059,18059,1.0 -84018061,18061,1.0 -84018063,18063,1.0 -84018065,18065,1.0 -84018067,18067,1.0 -84018069,18069,1.0 -84018071,18071,1.0 -84018073,18073,1.0 -84018075,18075,1.0 -84018077,18077,1.0 -84018079,18079,1.0 -84018081,18081,1.0 -84018083,18083,1.0 -84018085,18085,1.0 -84018087,18087,1.0 -84018089,18089,1.0 -84018091,18091,1.0 -84018093,18093,1.0 -84018095,18095,1.0 -84018097,18097,1.0 -84018099,18099,1.0 -84018101,18101,1.0 -84018103,18103,1.0 -84018105,18105,1.0 -84018107,18107,1.0 -84018109,18109,1.0 -84018111,18111,1.0 -84018113,18113,1.0 -84018115,18115,1.0 -84018117,18117,1.0 -84018119,18119,1.0 -84018121,18121,1.0 -84018123,18123,1.0 -84018125,18125,1.0 -84018127,18127,1.0 -84018129,18129,1.0 -84018131,18131,1.0 -84018133,18133,1.0 -84018135,18135,1.0 -84018137,18137,1.0 -84018139,18139,1.0 -84018141,18141,1.0 -84018143,18143,1.0 -84018145,18145,1.0 -84018147,18147,1.0 -84018149,18149,1.0 -84018151,18151,1.0 -84018153,18153,1.0 -84018155,18155,1.0 -84018157,18157,1.0 -84018159,18159,1.0 -84018161,18161,1.0 -84018163,18163,1.0 -84018165,18165,1.0 -84018167,18167,1.0 -84018169,18169,1.0 -84018171,18171,1.0 -84018173,18173,1.0 -84018175,18175,1.0 -84018177,18177,1.0 -84018179,18179,1.0 -84018181,18181,1.0 -84018183,18183,1.0 -84019001,19001,1.0 -84019003,19003,1.0 -84019005,19005,1.0 -84019007,19007,1.0 -84019009,19009,1.0 -84019011,19011,1.0 -84019013,19013,1.0 -84019015,19015,1.0 -84019017,19017,1.0 -84019019,19019,1.0 -84019021,19021,1.0 -84019023,19023,1.0 -84019025,19025,1.0 -84019027,19027,1.0 -84019029,19029,1.0 -84019031,19031,1.0 -84019033,19033,1.0 -84019035,19035,1.0 -84019037,19037,1.0 -84019039,19039,1.0 -84019041,19041,1.0 -84019043,19043,1.0 -84019045,19045,1.0 -84019047,19047,1.0 -84019049,19049,1.0 -84019051,19051,1.0 -84019053,19053,1.0 -84019055,19055,1.0 -84019057,19057,1.0 -84019059,19059,1.0 -84019061,19061,1.0 -84019063,19063,1.0 -84019065,19065,1.0 -84019067,19067,1.0 -84019069,19069,1.0 -84019071,19071,1.0 -84019073,19073,1.0 -84019075,19075,1.0 -84019077,19077,1.0 -84019079,19079,1.0 -84019081,19081,1.0 -84019083,19083,1.0 -84019085,19085,1.0 -84019087,19087,1.0 -84019089,19089,1.0 -84019091,19091,1.0 -84019093,19093,1.0 -84019095,19095,1.0 -84019097,19097,1.0 -84019099,19099,1.0 -84019101,19101,1.0 -84019103,19103,1.0 -84019105,19105,1.0 -84019107,19107,1.0 -84019109,19109,1.0 -84019111,19111,1.0 -84019113,19113,1.0 -84019115,19115,1.0 -84019117,19117,1.0 -84019119,19119,1.0 -84019121,19121,1.0 -84019123,19123,1.0 -84019125,19125,1.0 -84019127,19127,1.0 -84019129,19129,1.0 -84019131,19131,1.0 -84019133,19133,1.0 -84019135,19135,1.0 -84019137,19137,1.0 -84019139,19139,1.0 -84019141,19141,1.0 -84019143,19143,1.0 -84019145,19145,1.0 -84019147,19147,1.0 -84019149,19149,1.0 -84019151,19151,1.0 -84019153,19153,1.0 -84019155,19155,1.0 -84019157,19157,1.0 -84019159,19159,1.0 -84019161,19161,1.0 -84019163,19163,1.0 -84019165,19165,1.0 -84019167,19167,1.0 -84019169,19169,1.0 -84019171,19171,1.0 -84019173,19173,1.0 -84019175,19175,1.0 -84019177,19177,1.0 -84019179,19179,1.0 -84019181,19181,1.0 -84019183,19183,1.0 -84019185,19185,1.0 -84019187,19187,1.0 -84019189,19189,1.0 -84019191,19191,1.0 -84019193,19193,1.0 -84019195,19195,1.0 -84019197,19197,1.0 -84020001,20001,1.0 -84020003,20003,1.0 -84020005,20005,1.0 -84020007,20007,1.0 -84020009,20009,1.0 -84020011,20011,1.0 -84020013,20013,1.0 -84020015,20015,1.0 -84020017,20017,1.0 -84020019,20019,1.0 -84020021,20021,1.0 -84020023,20023,1.0 -84020025,20025,1.0 -84020027,20027,1.0 -84020029,20029,1.0 -84020031,20031,1.0 -84020033,20033,1.0 -84020035,20035,1.0 -84020037,20037,1.0 -84020039,20039,1.0 -84020041,20041,1.0 -84020043,20043,1.0 -84020045,20045,1.0 -84020047,20047,1.0 -84020049,20049,1.0 -84020051,20051,1.0 -84020053,20053,1.0 -84020055,20055,1.0 -84020057,20057,1.0 -84020059,20059,1.0 -84020061,20061,1.0 -84020063,20063,1.0 -84020065,20065,1.0 -84020067,20067,1.0 -84020069,20069,1.0 -84020071,20071,1.0 -84020073,20073,1.0 -84020075,20075,1.0 -84020077,20077,1.0 -84020079,20079,1.0 -84020081,20081,1.0 -84020083,20083,1.0 -84020085,20085,1.0 -84020087,20087,1.0 -84020089,20089,1.0 -84020091,20091,1.0 -84020093,20093,1.0 -84020095,20095,1.0 -84020097,20097,1.0 -84020099,20099,1.0 -84020101,20101,1.0 -84020103,20103,1.0 -84020105,20105,1.0 -84020107,20107,1.0 -84020109,20109,1.0 -84020111,20111,1.0 -84020113,20113,1.0 -84020115,20115,1.0 -84020117,20117,1.0 -84020119,20119,1.0 -84020121,20121,1.0 -84020123,20123,1.0 -84020125,20125,1.0 -84020127,20127,1.0 -84020129,20129,1.0 -84020131,20131,1.0 -84020133,20133,1.0 -84020135,20135,1.0 -84020137,20137,1.0 -84020139,20139,1.0 -84020141,20141,1.0 -84020143,20143,1.0 -84020145,20145,1.0 -84020147,20147,1.0 -84020149,20149,1.0 -84020151,20151,1.0 -84020153,20153,1.0 -84020155,20155,1.0 -84020157,20157,1.0 -84020159,20159,1.0 -84020161,20161,1.0 -84020163,20163,1.0 -84020165,20165,1.0 -84020167,20167,1.0 -84020169,20169,1.0 -84020171,20171,1.0 -84020173,20173,1.0 -84020175,20175,1.0 -84020177,20177,1.0 -84020179,20179,1.0 -84020181,20181,1.0 -84020183,20183,1.0 -84020185,20185,1.0 -84020187,20187,1.0 -84020189,20189,1.0 -84020191,20191,1.0 -84020193,20193,1.0 -84020195,20195,1.0 -84020197,20197,1.0 -84020199,20199,1.0 -84020201,20201,1.0 -84020203,20203,1.0 -84020205,20205,1.0 -84020207,20207,1.0 -84020209,20209,1.0 -84021001,21001,1.0 -84021003,21003,1.0 -84021005,21005,1.0 -84021007,21007,1.0 -84021009,21009,1.0 -84021011,21011,1.0 -84021013,21013,1.0 -84021015,21015,1.0 -84021017,21017,1.0 -84021019,21019,1.0 -84021021,21021,1.0 -84021023,21023,1.0 -84021025,21025,1.0 -84021027,21027,1.0 -84021029,21029,1.0 -84021031,21031,1.0 -84021033,21033,1.0 -84021035,21035,1.0 -84021037,21037,1.0 -84021039,21039,1.0 -84021041,21041,1.0 -84021043,21043,1.0 -84021045,21045,1.0 -84021047,21047,1.0 -84021049,21049,1.0 -84021051,21051,1.0 -84021053,21053,1.0 -84021055,21055,1.0 -84021057,21057,1.0 -84021059,21059,1.0 -84021061,21061,1.0 -84021063,21063,1.0 -84021065,21065,1.0 -84021067,21067,1.0 -84021069,21069,1.0 -84021071,21071,1.0 -84021073,21073,1.0 -84021075,21075,1.0 -84021077,21077,1.0 -84021079,21079,1.0 -84021081,21081,1.0 -84021083,21083,1.0 -84021085,21085,1.0 -84021087,21087,1.0 -84021089,21089,1.0 -84021091,21091,1.0 -84021093,21093,1.0 -84021095,21095,1.0 -84021097,21097,1.0 -84021099,21099,1.0 -84021101,21101,1.0 -84021103,21103,1.0 -84021105,21105,1.0 -84021107,21107,1.0 -84021109,21109,1.0 -84021111,21111,1.0 -84021113,21113,1.0 -84021115,21115,1.0 -84021117,21117,1.0 -84021119,21119,1.0 -84021121,21121,1.0 -84021123,21123,1.0 -84021125,21125,1.0 -84021127,21127,1.0 -84021129,21129,1.0 -84021131,21131,1.0 -84021133,21133,1.0 -84021135,21135,1.0 -84021137,21137,1.0 -84021139,21139,1.0 -84021141,21141,1.0 -84021143,21143,1.0 -84021145,21145,1.0 -84021147,21147,1.0 -84021149,21149,1.0 -84021151,21151,1.0 -84021153,21153,1.0 -84021155,21155,1.0 -84021157,21157,1.0 -84021159,21159,1.0 -84021161,21161,1.0 -84021163,21163,1.0 -84021165,21165,1.0 -84021167,21167,1.0 -84021169,21169,1.0 -84021171,21171,1.0 -84021173,21173,1.0 -84021175,21175,1.0 -84021177,21177,1.0 -84021179,21179,1.0 -84021181,21181,1.0 -84021183,21183,1.0 -84021185,21185,1.0 -84021187,21187,1.0 -84021189,21189,1.0 -84021191,21191,1.0 -84021193,21193,1.0 -84021195,21195,1.0 -84021197,21197,1.0 -84021199,21199,1.0 -84021201,21201,1.0 -84021203,21203,1.0 -84021205,21205,1.0 -84021207,21207,1.0 -84021209,21209,1.0 -84021211,21211,1.0 -84021213,21213,1.0 -84021215,21215,1.0 -84021217,21217,1.0 -84021219,21219,1.0 -84021221,21221,1.0 -84021223,21223,1.0 -84021225,21225,1.0 -84021227,21227,1.0 -84021229,21229,1.0 -84021231,21231,1.0 -84021233,21233,1.0 -84021235,21235,1.0 -84021237,21237,1.0 -84021239,21239,1.0 -84022001,22001,1.0 -84022003,22003,1.0 -84022005,22005,1.0 -84022007,22007,1.0 -84022009,22009,1.0 -84022011,22011,1.0 -84022013,22013,1.0 -84022015,22015,1.0 -84022017,22017,1.0 -84022019,22019,1.0 -84022021,22021,1.0 -84022023,22023,1.0 -84022025,22025,1.0 -84022027,22027,1.0 -84022029,22029,1.0 -84022031,22031,1.0 -84022033,22033,1.0 -84022035,22035,1.0 -84022037,22037,1.0 -84022039,22039,1.0 -84022041,22041,1.0 -84022043,22043,1.0 -84022045,22045,1.0 -84022047,22047,1.0 -84022049,22049,1.0 -84022051,22051,1.0 -84022053,22053,1.0 -84022055,22055,1.0 -84022057,22057,1.0 -84022059,22059,1.0 -84022061,22061,1.0 -84022063,22063,1.0 -84022065,22065,1.0 -84022067,22067,1.0 -84022069,22069,1.0 -84022071,22071,1.0 -84022073,22073,1.0 -84022075,22075,1.0 -84022077,22077,1.0 -84022079,22079,1.0 -84022081,22081,1.0 -84022083,22083,1.0 -84022085,22085,1.0 -84022087,22087,1.0 -84022089,22089,1.0 -84022091,22091,1.0 -84022093,22093,1.0 -84022095,22095,1.0 -84022097,22097,1.0 -84022099,22099,1.0 -84022101,22101,1.0 -84022103,22103,1.0 -84022105,22105,1.0 -84022107,22107,1.0 -84022109,22109,1.0 -84022111,22111,1.0 -84022113,22113,1.0 -84022115,22115,1.0 -84022117,22117,1.0 -84022119,22119,1.0 -84022121,22121,1.0 -84022123,22123,1.0 -84022125,22125,1.0 -84022127,22127,1.0 -84023001,23001,1.0 -84023003,23003,1.0 -84023005,23005,1.0 -84023007,23007,1.0 -84023009,23009,1.0 -84023011,23011,1.0 -84023013,23013,1.0 -84023015,23015,1.0 -84023017,23017,1.0 -84023019,23019,1.0 -84023021,23021,1.0 -84023023,23023,1.0 -84023025,23025,1.0 -84023027,23027,1.0 -84023029,23029,1.0 -84023031,23031,1.0 -84024001,24001,1.0 -84024003,24003,1.0 -84024005,24005,1.0 -84024009,24009,1.0 -84024011,24011,1.0 -84024013,24013,1.0 -84024015,24015,1.0 -84024017,24017,1.0 -84024019,24019,1.0 -84024021,24021,1.0 -84024023,24023,1.0 -84024025,24025,1.0 -84024027,24027,1.0 -84024029,24029,1.0 -84024031,24031,1.0 -84024033,24033,1.0 -84024035,24035,1.0 -84024037,24037,1.0 -84024039,24039,1.0 -84024041,24041,1.0 -84024043,24043,1.0 -84024045,24045,1.0 -84024047,24047,1.0 -84024510,24510,1.0 -84025001,25001,1.0 -84025003,25003,1.0 -84025005,25005,1.0 -84025007,25007,1.0 -84025009,25009,1.0 -84025011,25011,1.0 -84025013,25013,1.0 -84025015,25015,1.0 -84025017,25017,1.0 -84025019,25019,1.0 -84025021,25021,1.0 -84025023,25023,1.0 -84025025,25025,1.0 -84025027,25027,1.0 -84026001,26001,1.0 -84026003,26003,1.0 -84026005,26005,1.0 -84026007,26007,1.0 -84026009,26009,1.0 -84026011,26011,1.0 -84026013,26013,1.0 -84026015,26015,1.0 -84026017,26017,1.0 -84026019,26019,1.0 -84026021,26021,1.0 -84026023,26023,1.0 -84026025,26025,1.0 -84026027,26027,1.0 -84026029,26029,1.0 -84026031,26031,1.0 -84026033,26033,1.0 -84026035,26035,1.0 -84026037,26037,1.0 -84026039,26039,1.0 -84026041,26041,1.0 -84026043,26043,1.0 -84026045,26045,1.0 -84026047,26047,1.0 -84026049,26049,1.0 -84026051,26051,1.0 -84026053,26053,1.0 -84026055,26055,1.0 -84026057,26057,1.0 -84026059,26059,1.0 -84026061,26061,1.0 -84026063,26063,1.0 -84026065,26065,1.0 -84026067,26067,1.0 -84026069,26069,1.0 -84026071,26071,1.0 -84026073,26073,1.0 -84026075,26075,1.0 -84026077,26077,1.0 -84026079,26079,1.0 -84026081,26081,1.0 -84026083,26083,1.0 -84026085,26085,1.0 -84026087,26087,1.0 -84026089,26089,1.0 -84026091,26091,1.0 -84026093,26093,1.0 -84026095,26095,1.0 -84026097,26097,1.0 -84026099,26099,1.0 -84026101,26101,1.0 -84026103,26103,1.0 -84026105,26105,1.0 -84026107,26107,1.0 -84026109,26109,1.0 -84026111,26111,1.0 -84026113,26113,1.0 -84026115,26115,1.0 -84026117,26117,1.0 -84026119,26119,1.0 -84026121,26121,1.0 -84026123,26123,1.0 -84026125,26125,1.0 -84026127,26127,1.0 -84026129,26129,1.0 -84026131,26131,1.0 -84026133,26133,1.0 -84026135,26135,1.0 -84026137,26137,1.0 -84026139,26139,1.0 -84026141,26141,1.0 -84026143,26143,1.0 -84026145,26145,1.0 -84026147,26147,1.0 -84026149,26149,1.0 -84026151,26151,1.0 -84026153,26153,1.0 -84026155,26155,1.0 -84026157,26157,1.0 -84026159,26159,1.0 -84026161,26161,1.0 -84026163,26163,1.0 -84026165,26165,1.0 -84027001,27001,1.0 -84027003,27003,1.0 -84027005,27005,1.0 -84027007,27007,1.0 -84027009,27009,1.0 -84027011,27011,1.0 -84027013,27013,1.0 -84027015,27015,1.0 -84027017,27017,1.0 -84027019,27019,1.0 -84027021,27021,1.0 -84027023,27023,1.0 -84027025,27025,1.0 -84027027,27027,1.0 -84027029,27029,1.0 -84027031,27031,1.0 -84027033,27033,1.0 -84027035,27035,1.0 -84027037,27037,1.0 -84027039,27039,1.0 -84027041,27041,1.0 -84027043,27043,1.0 -84027045,27045,1.0 -84027047,27047,1.0 -84027049,27049,1.0 -84027051,27051,1.0 -84027053,27053,1.0 -84027055,27055,1.0 -84027057,27057,1.0 -84027059,27059,1.0 -84027061,27061,1.0 -84027063,27063,1.0 -84027065,27065,1.0 -84027067,27067,1.0 -84027069,27069,1.0 -84027071,27071,1.0 -84027073,27073,1.0 -84027075,27075,1.0 -84027077,27077,1.0 -84027079,27079,1.0 -84027081,27081,1.0 -84027083,27083,1.0 -84027085,27085,1.0 -84027087,27087,1.0 -84027089,27089,1.0 -84027091,27091,1.0 -84027093,27093,1.0 -84027095,27095,1.0 -84027097,27097,1.0 -84027099,27099,1.0 -84027101,27101,1.0 -84027103,27103,1.0 -84027105,27105,1.0 -84027107,27107,1.0 -84027109,27109,1.0 -84027111,27111,1.0 -84027113,27113,1.0 -84027115,27115,1.0 -84027117,27117,1.0 -84027119,27119,1.0 -84027121,27121,1.0 -84027123,27123,1.0 -84027125,27125,1.0 -84027127,27127,1.0 -84027129,27129,1.0 -84027131,27131,1.0 -84027133,27133,1.0 -84027135,27135,1.0 -84027137,27137,1.0 -84027139,27139,1.0 -84027141,27141,1.0 -84027143,27143,1.0 -84027145,27145,1.0 -84027147,27147,1.0 -84027149,27149,1.0 -84027151,27151,1.0 -84027153,27153,1.0 -84027155,27155,1.0 -84027157,27157,1.0 -84027159,27159,1.0 -84027161,27161,1.0 -84027163,27163,1.0 -84027165,27165,1.0 -84027167,27167,1.0 -84027169,27169,1.0 -84027171,27171,1.0 -84027173,27173,1.0 -84028001,28001,1.0 -84028003,28003,1.0 -84028005,28005,1.0 -84028007,28007,1.0 -84028009,28009,1.0 -84028011,28011,1.0 -84028013,28013,1.0 -84028015,28015,1.0 -84028017,28017,1.0 -84028019,28019,1.0 -84028021,28021,1.0 -84028023,28023,1.0 -84028025,28025,1.0 -84028027,28027,1.0 -84028029,28029,1.0 -84028031,28031,1.0 -84028033,28033,1.0 -84028035,28035,1.0 -84028037,28037,1.0 -84028039,28039,1.0 -84028041,28041,1.0 -84028043,28043,1.0 -84028045,28045,1.0 -84028047,28047,1.0 -84028049,28049,1.0 -84028051,28051,1.0 -84028053,28053,1.0 -84028055,28055,1.0 -84028057,28057,1.0 -84028059,28059,1.0 -84028061,28061,1.0 -84028063,28063,1.0 -84028065,28065,1.0 -84028067,28067,1.0 -84028069,28069,1.0 -84028071,28071,1.0 -84028073,28073,1.0 -84028075,28075,1.0 -84028077,28077,1.0 -84028079,28079,1.0 -84028081,28081,1.0 -84028083,28083,1.0 -84028085,28085,1.0 -84028087,28087,1.0 -84028089,28089,1.0 -84028091,28091,1.0 -84028093,28093,1.0 -84028095,28095,1.0 -84028097,28097,1.0 -84028099,28099,1.0 -84028101,28101,1.0 -84028103,28103,1.0 -84028105,28105,1.0 -84028107,28107,1.0 -84028109,28109,1.0 -84028111,28111,1.0 -84028113,28113,1.0 -84028115,28115,1.0 -84028117,28117,1.0 -84028119,28119,1.0 -84028121,28121,1.0 -84028123,28123,1.0 -84028125,28125,1.0 -84028127,28127,1.0 -84028129,28129,1.0 -84028131,28131,1.0 -84028133,28133,1.0 -84028135,28135,1.0 -84028137,28137,1.0 -84028139,28139,1.0 -84028141,28141,1.0 -84028143,28143,1.0 -84028145,28145,1.0 -84028147,28147,1.0 -84028149,28149,1.0 -84028151,28151,1.0 -84028153,28153,1.0 -84028155,28155,1.0 -84028157,28157,1.0 -84028159,28159,1.0 -84028161,28161,1.0 -84028163,28163,1.0 -84029001,29001,1.0 -84029003,29003,1.0 -84029005,29005,1.0 -84029007,29007,1.0 -84029009,29009,1.0 -84029011,29011,1.0 -84029013,29013,1.0 -84029015,29015,1.0 -84029017,29017,1.0 -84029019,29019,1.0 -84029021,29021,1.0 -84029023,29023,1.0 -84029025,29025,1.0 -84029027,29027,1.0 -84029029,29029,1.0 -84029031,29031,1.0 -84029033,29033,1.0 -84029035,29035,1.0 -84029037,29037,1.0 -84029039,29039,1.0 -84029041,29041,1.0 -84029043,29043,1.0 -84029045,29045,1.0 -84029047,29047,1.0 -84029049,29049,1.0 -84029051,29051,1.0 -84029053,29053,1.0 -84029055,29055,1.0 -84029057,29057,1.0 -84029059,29059,1.0 -84029061,29061,1.0 -84029063,29063,1.0 -84029065,29065,1.0 -84029067,29067,1.0 -84029069,29069,1.0 -84029071,29071,1.0 -84029073,29073,1.0 -84029075,29075,1.0 -84029077,29077,1.0 -84029079,29079,1.0 -84029081,29081,1.0 -84029083,29083,1.0 -84029085,29085,1.0 -84029087,29087,1.0 -84029089,29089,1.0 -84029091,29091,1.0 -84029093,29093,1.0 -84029095,29095,1.0 -84029097,29097,1.0 -84029099,29099,1.0 -84029101,29101,1.0 -84029103,29103,1.0 -84029105,29105,1.0 -84029107,29107,1.0 -84029109,29109,1.0 -84029111,29111,1.0 -84029113,29113,1.0 -84029115,29115,1.0 -84029117,29117,1.0 -84029119,29119,1.0 -84029121,29121,1.0 -84029123,29123,1.0 -84029125,29125,1.0 -84029127,29127,1.0 -84029129,29129,1.0 -84029131,29131,1.0 -84029133,29133,1.0 -84029135,29135,1.0 -84029137,29137,1.0 -84029139,29139,1.0 -84029141,29141,1.0 -84029143,29143,1.0 -84029145,29145,1.0 -84029147,29147,1.0 -84029149,29149,1.0 -84029151,29151,1.0 -84029153,29153,1.0 -84029155,29155,1.0 -84029157,29157,1.0 -84029159,29159,1.0 -84029161,29161,1.0 -84029163,29163,1.0 -84029165,29165,1.0 -84029167,29167,1.0 -84029169,29169,1.0 -84029171,29171,1.0 -84029173,29173,1.0 -84029175,29175,1.0 -84029177,29177,1.0 -84029179,29179,1.0 -84029181,29181,1.0 -84029183,29183,1.0 -84029185,29185,1.0 -84029186,29186,1.0 -84029187,29187,1.0 -84029189,29189,1.0 -84029195,29195,1.0 -84029197,29197,1.0 -84029199,29199,1.0 -84029201,29201,1.0 -84029203,29203,1.0 -84029205,29205,1.0 -84029207,29207,1.0 -84029209,29209,1.0 -84029211,29211,1.0 -84029213,29213,1.0 -84029215,29215,1.0 -84029217,29217,1.0 -84029219,29219,1.0 -84029221,29221,1.0 -84029223,29223,1.0 -84029225,29225,1.0 -84029227,29227,1.0 -84029229,29229,1.0 -84029510,29510,1.0 -84030001,30001,1.0 -84030003,30003,1.0 -84030005,30005,1.0 -84030007,30007,1.0 -84030009,30009,1.0 -84030011,30011,1.0 -84030013,30013,1.0 -84030015,30015,1.0 -84030017,30017,1.0 -84030019,30019,1.0 -84030021,30021,1.0 -84030023,30023,1.0 -84030025,30025,1.0 -84030027,30027,1.0 -84030029,30029,1.0 -84030031,30031,1.0 -84030033,30033,1.0 -84030035,30035,1.0 -84030037,30037,1.0 -84030039,30039,1.0 -84030041,30041,1.0 -84030043,30043,1.0 -84030045,30045,1.0 -84030047,30047,1.0 -84030049,30049,1.0 -84030051,30051,1.0 -84030053,30053,1.0 -84030055,30055,1.0 -84030057,30057,1.0 -84030059,30059,1.0 -84030061,30061,1.0 -84030063,30063,1.0 -84030065,30065,1.0 -84030067,30067,1.0 -84030069,30069,1.0 -84030071,30071,1.0 -84030073,30073,1.0 -84030075,30075,1.0 -84030077,30077,1.0 -84030079,30079,1.0 -84030081,30081,1.0 -84030083,30083,1.0 -84030085,30085,1.0 -84030087,30087,1.0 -84030089,30089,1.0 -84030091,30091,1.0 -84030093,30093,1.0 -84030095,30095,1.0 -84030097,30097,1.0 -84030099,30099,1.0 -84030101,30101,1.0 -84030103,30103,1.0 -84030105,30105,1.0 -84030107,30107,1.0 -84030109,30109,1.0 -84030111,30111,1.0 -84031001,31001,1.0 -84031003,31003,1.0 -84031005,31005,1.0 -84031007,31007,1.0 -84031009,31009,1.0 -84031011,31011,1.0 -84031013,31013,1.0 -84031015,31015,1.0 -84031017,31017,1.0 -84031019,31019,1.0 -84031021,31021,1.0 -84031023,31023,1.0 -84031025,31025,1.0 -84031027,31027,1.0 -84031029,31029,1.0 -84031031,31031,1.0 -84031033,31033,1.0 -84031035,31035,1.0 -84031037,31037,1.0 -84031039,31039,1.0 -84031041,31041,1.0 -84031043,31043,1.0 -84031045,31045,1.0 -84031047,31047,1.0 -84031049,31049,1.0 -84031051,31051,1.0 -84031053,31053,1.0 -84031055,31055,1.0 -84031057,31057,1.0 -84031059,31059,1.0 -84031061,31061,1.0 -84031063,31063,1.0 -84031065,31065,1.0 -84031067,31067,1.0 -84031069,31069,1.0 -84031071,31071,1.0 -84031073,31073,1.0 -84031075,31075,1.0 -84031077,31077,1.0 -84031079,31079,1.0 -84031081,31081,1.0 -84031083,31083,1.0 -84031085,31085,1.0 -84031087,31087,1.0 -84031089,31089,1.0 -84031091,31091,1.0 -84031093,31093,1.0 -84031095,31095,1.0 -84031097,31097,1.0 -84031099,31099,1.0 -84031101,31101,1.0 -84031103,31103,1.0 -84031105,31105,1.0 -84031107,31107,1.0 -84031109,31109,1.0 -84031111,31111,1.0 -84031113,31113,1.0 -84031115,31115,1.0 -84031117,31117,1.0 -84031119,31119,1.0 -84031121,31121,1.0 -84031123,31123,1.0 -84031125,31125,1.0 -84031127,31127,1.0 -84031129,31129,1.0 -84031131,31131,1.0 -84031133,31133,1.0 -84031135,31135,1.0 -84031137,31137,1.0 -84031139,31139,1.0 -84031141,31141,1.0 -84031143,31143,1.0 -84031145,31145,1.0 -84031147,31147,1.0 -84031149,31149,1.0 -84031151,31151,1.0 -84031153,31153,1.0 -84031155,31155,1.0 -84031157,31157,1.0 -84031159,31159,1.0 -84031161,31161,1.0 -84031163,31163,1.0 -84031165,31165,1.0 -84031167,31167,1.0 -84031169,31169,1.0 -84031171,31171,1.0 -84031173,31173,1.0 -84031175,31175,1.0 -84031177,31177,1.0 -84031179,31179,1.0 -84031181,31181,1.0 -84031183,31183,1.0 -84031185,31185,1.0 -84032001,32001,1.0 -84032003,32003,1.0 -84032005,32005,1.0 -84032007,32007,1.0 -84032009,32009,1.0 -84032011,32011,1.0 -84032013,32013,1.0 -84032015,32015,1.0 -84032017,32017,1.0 -84032019,32019,1.0 -84032021,32021,1.0 -84032023,32023,1.0 -84032027,32027,1.0 -84032029,32029,1.0 -84032031,32031,1.0 -84032033,32033,1.0 -84032510,32510,1.0 -84033001,33001,1.0 -84033003,33003,1.0 -84033005,33005,1.0 -84033007,33007,1.0 -84033009,33009,1.0 -84033011,33011,1.0 -84033013,33013,1.0 -84033015,33015,1.0 -84033017,33017,1.0 -84033019,33019,1.0 -84034001,34001,1.0 -84034003,34003,1.0 -84034005,34005,1.0 -84034007,34007,1.0 -84034009,34009,1.0 -84034011,34011,1.0 -84034013,34013,1.0 -84034015,34015,1.0 -84034017,34017,1.0 -84034019,34019,1.0 -84034021,34021,1.0 -84034023,34023,1.0 -84034025,34025,1.0 -84034027,34027,1.0 -84034029,34029,1.0 -84034031,34031,1.0 -84034033,34033,1.0 -84034035,34035,1.0 -84034037,34037,1.0 -84034039,34039,1.0 -84034041,34041,1.0 -84035001,35001,1.0 -84035003,35003,1.0 -84035005,35005,1.0 -84035006,35006,1.0 -84035007,35007,1.0 -84035009,35009,1.0 -84035011,35011,1.0 -84035013,35013,1.0 -84035015,35015,1.0 -84035017,35017,1.0 -84035019,35019,1.0 -84035021,35021,1.0 -84035023,35023,1.0 -84035025,35025,1.0 -84035027,35027,1.0 -84035028,35028,1.0 -84035029,35029,1.0 -84035031,35031,1.0 -84035033,35033,1.0 -84035035,35035,1.0 -84035037,35037,1.0 -84035039,35039,1.0 -84035041,35041,1.0 -84035043,35043,1.0 -84035045,35045,1.0 -84035047,35047,1.0 -84035049,35049,1.0 -84035051,35051,1.0 -84035053,35053,1.0 -84035055,35055,1.0 -84035057,35057,1.0 -84035059,35059,1.0 -84035061,35061,1.0 -84036001,36001,1.0 -84036003,36003,1.0 -84036005,36005,1.0 -84036007,36007,1.0 -84036009,36009,1.0 -84036011,36011,1.0 -84036013,36013,1.0 -84036015,36015,1.0 -84036017,36017,1.0 -84036019,36019,1.0 -84036021,36021,1.0 -84036023,36023,1.0 -84036025,36025,1.0 -84036027,36027,1.0 -84036029,36029,1.0 -84036031,36031,1.0 -84036033,36033,1.0 -84036035,36035,1.0 -84036037,36037,1.0 -84036039,36039,1.0 -84036041,36041,1.0 -84036043,36043,1.0 -84036045,36045,1.0 -84036047,36047,1.0 -84036049,36049,1.0 -84036051,36051,1.0 -84036053,36053,1.0 -84036055,36055,1.0 -84036057,36057,1.0 -84036059,36059,1.0 -84036061,36061,1.0 -84036063,36063,1.0 -84036065,36065,1.0 -84036067,36067,1.0 -84036069,36069,1.0 -84036071,36071,1.0 -84036073,36073,1.0 -84036075,36075,1.0 -84036077,36077,1.0 -84036079,36079,1.0 -84036081,36081,1.0 -84036083,36083,1.0 -84036085,36085,1.0 -84036087,36087,1.0 -84036089,36089,1.0 -84036091,36091,1.0 -84036093,36093,1.0 -84036095,36095,1.0 -84036097,36097,1.0 -84036099,36099,1.0 -84036101,36101,1.0 -84036103,36103,1.0 -84036105,36105,1.0 -84036107,36107,1.0 -84036109,36109,1.0 -84036111,36111,1.0 -84036113,36113,1.0 -84036115,36115,1.0 -84036117,36117,1.0 -84036119,36119,1.0 -84036121,36121,1.0 -84036123,36123,1.0 -84037001,37001,1.0 -84037003,37003,1.0 -84037005,37005,1.0 -84037007,37007,1.0 -84037009,37009,1.0 -84037011,37011,1.0 -84037013,37013,1.0 -84037015,37015,1.0 -84037017,37017,1.0 -84037019,37019,1.0 -84037021,37021,1.0 -84037023,37023,1.0 -84037025,37025,1.0 -84037027,37027,1.0 -84037029,37029,1.0 -84037031,37031,1.0 -84037033,37033,1.0 -84037035,37035,1.0 -84037037,37037,1.0 -84037039,37039,1.0 -84037041,37041,1.0 -84037043,37043,1.0 -84037045,37045,1.0 -84037047,37047,1.0 -84037049,37049,1.0 -84037051,37051,1.0 -84037053,37053,1.0 -84037055,37055,1.0 -84037057,37057,1.0 -84037059,37059,1.0 -84037061,37061,1.0 -84037063,37063,1.0 -84037065,37065,1.0 -84037067,37067,1.0 -84037069,37069,1.0 -84037071,37071,1.0 -84037073,37073,1.0 -84037075,37075,1.0 -84037077,37077,1.0 -84037079,37079,1.0 -84037081,37081,1.0 -84037083,37083,1.0 -84037085,37085,1.0 -84037087,37087,1.0 -84037089,37089,1.0 -84037091,37091,1.0 -84037093,37093,1.0 -84037095,37095,1.0 -84037097,37097,1.0 -84037099,37099,1.0 -84037101,37101,1.0 -84037103,37103,1.0 -84037105,37105,1.0 -84037107,37107,1.0 -84037109,37109,1.0 -84037111,37111,1.0 -84037113,37113,1.0 -84037115,37115,1.0 -84037117,37117,1.0 -84037119,37119,1.0 -84037121,37121,1.0 -84037123,37123,1.0 -84037125,37125,1.0 -84037127,37127,1.0 -84037129,37129,1.0 -84037131,37131,1.0 -84037133,37133,1.0 -84037135,37135,1.0 -84037137,37137,1.0 -84037139,37139,1.0 -84037141,37141,1.0 -84037143,37143,1.0 -84037145,37145,1.0 -84037147,37147,1.0 -84037149,37149,1.0 -84037151,37151,1.0 -84037153,37153,1.0 -84037155,37155,1.0 -84037157,37157,1.0 -84037159,37159,1.0 -84037161,37161,1.0 -84037163,37163,1.0 -84037165,37165,1.0 -84037167,37167,1.0 -84037169,37169,1.0 -84037171,37171,1.0 -84037173,37173,1.0 -84037175,37175,1.0 -84037177,37177,1.0 -84037179,37179,1.0 -84037181,37181,1.0 -84037183,37183,1.0 -84037185,37185,1.0 -84037187,37187,1.0 -84037189,37189,1.0 -84037191,37191,1.0 -84037193,37193,1.0 -84037195,37195,1.0 -84037197,37197,1.0 -84037199,37199,1.0 -84038001,38001,1.0 -84038003,38003,1.0 -84038005,38005,1.0 -84038007,38007,1.0 -84038009,38009,1.0 -84038011,38011,1.0 -84038013,38013,1.0 -84038015,38015,1.0 -84038017,38017,1.0 -84038019,38019,1.0 -84038021,38021,1.0 -84038023,38023,1.0 -84038025,38025,1.0 -84038027,38027,1.0 -84038029,38029,1.0 -84038031,38031,1.0 -84038033,38033,1.0 -84038035,38035,1.0 -84038037,38037,1.0 -84038039,38039,1.0 -84038041,38041,1.0 -84038043,38043,1.0 -84038045,38045,1.0 -84038047,38047,1.0 -84038049,38049,1.0 -84038051,38051,1.0 -84038053,38053,1.0 -84038055,38055,1.0 -84038057,38057,1.0 -84038059,38059,1.0 -84038061,38061,1.0 -84038063,38063,1.0 -84038065,38065,1.0 -84038067,38067,1.0 -84038069,38069,1.0 -84038071,38071,1.0 -84038073,38073,1.0 -84038075,38075,1.0 -84038077,38077,1.0 -84038079,38079,1.0 -84038081,38081,1.0 -84038083,38083,1.0 -84038085,38085,1.0 -84038087,38087,1.0 -84038089,38089,1.0 -84038091,38091,1.0 -84038093,38093,1.0 -84038095,38095,1.0 -84038097,38097,1.0 -84038099,38099,1.0 -84038101,38101,1.0 -84038103,38103,1.0 -84038105,38105,1.0 -84039001,39001,1.0 -84039003,39003,1.0 -84039005,39005,1.0 -84039007,39007,1.0 -84039009,39009,1.0 -84039011,39011,1.0 -84039013,39013,1.0 -84039015,39015,1.0 -84039017,39017,1.0 -84039019,39019,1.0 -84039021,39021,1.0 -84039023,39023,1.0 -84039025,39025,1.0 -84039027,39027,1.0 -84039029,39029,1.0 -84039031,39031,1.0 -84039033,39033,1.0 -84039035,39035,1.0 -84039037,39037,1.0 -84039039,39039,1.0 -84039041,39041,1.0 -84039043,39043,1.0 -84039045,39045,1.0 -84039047,39047,1.0 -84039049,39049,1.0 -84039051,39051,1.0 -84039053,39053,1.0 -84039055,39055,1.0 -84039057,39057,1.0 -84039059,39059,1.0 -84039061,39061,1.0 -84039063,39063,1.0 -84039065,39065,1.0 -84039067,39067,1.0 -84039069,39069,1.0 -84039071,39071,1.0 -84039073,39073,1.0 -84039075,39075,1.0 -84039077,39077,1.0 -84039079,39079,1.0 -84039081,39081,1.0 -84039083,39083,1.0 -84039085,39085,1.0 -84039087,39087,1.0 -84039089,39089,1.0 -84039091,39091,1.0 -84039093,39093,1.0 -84039095,39095,1.0 -84039097,39097,1.0 -84039099,39099,1.0 -84039101,39101,1.0 -84039103,39103,1.0 -84039105,39105,1.0 -84039107,39107,1.0 -84039109,39109,1.0 -84039111,39111,1.0 -84039113,39113,1.0 -84039115,39115,1.0 -84039117,39117,1.0 -84039119,39119,1.0 -84039121,39121,1.0 -84039123,39123,1.0 -84039125,39125,1.0 -84039127,39127,1.0 -84039129,39129,1.0 -84039131,39131,1.0 -84039133,39133,1.0 -84039135,39135,1.0 -84039137,39137,1.0 -84039139,39139,1.0 -84039141,39141,1.0 -84039143,39143,1.0 -84039145,39145,1.0 -84039147,39147,1.0 -84039149,39149,1.0 -84039151,39151,1.0 -84039153,39153,1.0 -84039155,39155,1.0 -84039157,39157,1.0 -84039159,39159,1.0 -84039161,39161,1.0 -84039163,39163,1.0 -84039165,39165,1.0 -84039167,39167,1.0 -84039169,39169,1.0 -84039171,39171,1.0 -84039173,39173,1.0 -84039175,39175,1.0 -84040001,40001,1.0 -84040003,40003,1.0 -84040005,40005,1.0 -84040007,40007,1.0 -84040009,40009,1.0 -84040011,40011,1.0 -84040013,40013,1.0 -84040015,40015,1.0 -84040017,40017,1.0 -84040019,40019,1.0 -84040021,40021,1.0 -84040023,40023,1.0 -84040025,40025,1.0 -84040027,40027,1.0 -84040029,40029,1.0 -84040031,40031,1.0 -84040033,40033,1.0 -84040035,40035,1.0 -84040037,40037,1.0 -84040039,40039,1.0 -84040041,40041,1.0 -84040043,40043,1.0 -84040045,40045,1.0 -84040047,40047,1.0 -84040049,40049,1.0 -84040051,40051,1.0 -84040053,40053,1.0 -84040055,40055,1.0 -84040057,40057,1.0 -84040059,40059,1.0 -84040061,40061,1.0 -84040063,40063,1.0 -84040065,40065,1.0 -84040067,40067,1.0 -84040069,40069,1.0 -84040071,40071,1.0 -84040073,40073,1.0 -84040075,40075,1.0 -84040077,40077,1.0 -84040079,40079,1.0 -84040081,40081,1.0 -84040083,40083,1.0 -84040085,40085,1.0 -84040087,40087,1.0 -84040089,40089,1.0 -84040091,40091,1.0 -84040093,40093,1.0 -84040095,40095,1.0 -84040097,40097,1.0 -84040099,40099,1.0 -84040101,40101,1.0 -84040103,40103,1.0 -84040105,40105,1.0 -84040107,40107,1.0 -84040109,40109,1.0 -84040111,40111,1.0 -84040113,40113,1.0 -84040115,40115,1.0 -84040117,40117,1.0 -84040119,40119,1.0 -84040121,40121,1.0 -84040123,40123,1.0 -84040125,40125,1.0 -84040127,40127,1.0 -84040129,40129,1.0 -84040131,40131,1.0 -84040133,40133,1.0 -84040135,40135,1.0 -84040137,40137,1.0 -84040139,40139,1.0 -84040141,40141,1.0 -84040143,40143,1.0 -84040145,40145,1.0 -84040147,40147,1.0 -84040149,40149,1.0 -84040151,40151,1.0 -84040153,40153,1.0 -84041001,41001,1.0 -84041003,41003,1.0 -84041005,41005,1.0 -84041007,41007,1.0 -84041009,41009,1.0 -84041011,41011,1.0 -84041013,41013,1.0 -84041015,41015,1.0 -84041017,41017,1.0 -84041019,41019,1.0 -84041021,41021,1.0 -84041023,41023,1.0 -84041025,41025,1.0 -84041027,41027,1.0 -84041029,41029,1.0 -84041031,41031,1.0 -84041033,41033,1.0 -84041035,41035,1.0 -84041037,41037,1.0 -84041039,41039,1.0 -84041041,41041,1.0 -84041043,41043,1.0 -84041045,41045,1.0 -84041047,41047,1.0 -84041049,41049,1.0 -84041051,41051,1.0 -84041053,41053,1.0 -84041055,41055,1.0 -84041057,41057,1.0 -84041059,41059,1.0 -84041061,41061,1.0 -84041063,41063,1.0 -84041065,41065,1.0 -84041067,41067,1.0 -84041069,41069,1.0 -84041071,41071,1.0 -84042001,42001,1.0 -84042003,42003,1.0 -84042005,42005,1.0 -84042007,42007,1.0 -84042009,42009,1.0 -84042011,42011,1.0 -84042013,42013,1.0 -84042015,42015,1.0 -84042017,42017,1.0 -84042019,42019,1.0 -84042021,42021,1.0 -84042023,42023,1.0 -84042025,42025,1.0 -84042027,42027,1.0 -84042029,42029,1.0 -84042031,42031,1.0 -84042033,42033,1.0 -84042035,42035,1.0 -84042037,42037,1.0 -84042039,42039,1.0 -84042041,42041,1.0 -84042043,42043,1.0 -84042045,42045,1.0 -84042047,42047,1.0 -84042049,42049,1.0 -84042051,42051,1.0 -84042053,42053,1.0 -84042055,42055,1.0 -84042057,42057,1.0 -84042059,42059,1.0 -84042061,42061,1.0 -84042063,42063,1.0 -84042065,42065,1.0 -84042067,42067,1.0 -84042069,42069,1.0 -84042071,42071,1.0 -84042073,42073,1.0 -84042075,42075,1.0 -84042077,42077,1.0 -84042079,42079,1.0 -84042081,42081,1.0 -84042083,42083,1.0 -84042085,42085,1.0 -84042087,42087,1.0 -84042089,42089,1.0 -84042091,42091,1.0 -84042093,42093,1.0 -84042095,42095,1.0 -84042097,42097,1.0 -84042099,42099,1.0 -84042101,42101,1.0 -84042103,42103,1.0 -84042105,42105,1.0 -84042107,42107,1.0 -84042109,42109,1.0 -84042111,42111,1.0 -84042113,42113,1.0 -84042115,42115,1.0 -84042117,42117,1.0 -84042119,42119,1.0 -84042121,42121,1.0 -84042123,42123,1.0 -84042125,42125,1.0 -84042127,42127,1.0 -84042129,42129,1.0 -84042131,42131,1.0 -84042133,42133,1.0 -84044001,44001,1.0 -84044003,44003,1.0 -84044005,44005,1.0 -84044007,44007,1.0 -84044009,44009,1.0 -84045001,45001,1.0 -84045003,45003,1.0 -84045005,45005,1.0 -84045007,45007,1.0 -84045009,45009,1.0 -84045011,45011,1.0 -84045013,45013,1.0 -84045015,45015,1.0 -84045017,45017,1.0 -84045019,45019,1.0 -84045021,45021,1.0 -84045023,45023,1.0 -84045025,45025,1.0 -84045027,45027,1.0 -84045029,45029,1.0 -84045031,45031,1.0 -84045033,45033,1.0 -84045035,45035,1.0 -84045037,45037,1.0 -84045039,45039,1.0 -84045041,45041,1.0 -84045043,45043,1.0 -84045045,45045,1.0 -84045047,45047,1.0 -84045049,45049,1.0 -84045051,45051,1.0 -84045053,45053,1.0 -84045055,45055,1.0 -84045057,45057,1.0 -84045059,45059,1.0 -84045061,45061,1.0 -84045063,45063,1.0 -84045065,45065,1.0 -84045067,45067,1.0 -84045069,45069,1.0 -84045071,45071,1.0 -84045073,45073,1.0 -84045075,45075,1.0 -84045077,45077,1.0 -84045079,45079,1.0 -84045081,45081,1.0 -84045083,45083,1.0 -84045085,45085,1.0 -84045087,45087,1.0 -84045089,45089,1.0 -84045091,45091,1.0 -84046003,46003,1.0 -84046005,46005,1.0 -84046007,46007,1.0 -84046009,46009,1.0 -84046011,46011,1.0 -84046013,46013,1.0 -84046015,46015,1.0 -84046017,46017,1.0 -84046019,46019,1.0 -84046021,46021,1.0 -84046023,46023,1.0 -84046025,46025,1.0 -84046027,46027,1.0 -84046029,46029,1.0 -84046031,46031,1.0 -84046033,46033,1.0 -84046035,46035,1.0 -84046037,46037,1.0 -84046039,46039,1.0 -84046041,46041,1.0 -84046043,46043,1.0 -84046045,46045,1.0 -84046047,46047,1.0 -84046049,46049,1.0 -84046051,46051,1.0 -84046053,46053,1.0 -84046055,46055,1.0 -84046057,46057,1.0 -84046059,46059,1.0 -84046061,46061,1.0 -84046063,46063,1.0 -84046065,46065,1.0 -84046067,46067,1.0 -84046069,46069,1.0 -84046071,46071,1.0 -84046073,46073,1.0 -84046075,46075,1.0 -84046077,46077,1.0 -84046079,46079,1.0 -84046081,46081,1.0 -84046083,46083,1.0 -84046085,46085,1.0 -84046087,46087,1.0 -84046089,46089,1.0 -84046091,46091,1.0 -84046093,46093,1.0 -84046095,46095,1.0 -84046097,46097,1.0 -84046099,46099,1.0 -84046101,46101,1.0 -84046102,46113,1.0 -84046103,46103,1.0 -84046105,46105,1.0 -84046107,46107,1.0 -84046109,46109,1.0 -84046111,46111,1.0 -84046115,46115,1.0 -84046117,46117,1.0 -84046119,46119,1.0 -84046121,46121,1.0 -84046123,46123,1.0 -84046125,46125,1.0 -84046127,46127,1.0 -84046129,46129,1.0 -84046135,46135,1.0 -84046137,46137,1.0 -84047001,47001,1.0 -84047003,47003,1.0 -84047005,47005,1.0 -84047007,47007,1.0 -84047009,47009,1.0 -84047011,47011,1.0 -84047013,47013,1.0 -84047015,47015,1.0 -84047017,47017,1.0 -84047019,47019,1.0 -84047021,47021,1.0 -84047023,47023,1.0 -84047025,47025,1.0 -84047027,47027,1.0 -84047029,47029,1.0 -84047031,47031,1.0 -84047033,47033,1.0 -84047035,47035,1.0 -84047037,47037,1.0 -84047039,47039,1.0 -84047041,47041,1.0 -84047043,47043,1.0 -84047045,47045,1.0 -84047047,47047,1.0 -84047049,47049,1.0 -84047051,47051,1.0 -84047053,47053,1.0 -84047055,47055,1.0 -84047057,47057,1.0 -84047059,47059,1.0 -84047061,47061,1.0 -84047063,47063,1.0 -84047065,47065,1.0 -84047067,47067,1.0 -84047069,47069,1.0 -84047071,47071,1.0 -84047073,47073,1.0 -84047075,47075,1.0 -84047077,47077,1.0 -84047079,47079,1.0 -84047081,47081,1.0 -84047083,47083,1.0 -84047085,47085,1.0 -84047087,47087,1.0 -84047089,47089,1.0 -84047091,47091,1.0 -84047093,47093,1.0 -84047095,47095,1.0 -84047097,47097,1.0 -84047099,47099,1.0 -84047101,47101,1.0 -84047103,47103,1.0 -84047105,47105,1.0 -84047107,47107,1.0 -84047109,47109,1.0 -84047111,47111,1.0 -84047113,47113,1.0 -84047115,47115,1.0 -84047117,47117,1.0 -84047119,47119,1.0 -84047121,47121,1.0 -84047123,47123,1.0 -84047125,47125,1.0 -84047127,47127,1.0 -84047129,47129,1.0 -84047131,47131,1.0 -84047133,47133,1.0 -84047135,47135,1.0 -84047137,47137,1.0 -84047139,47139,1.0 -84047141,47141,1.0 -84047143,47143,1.0 -84047145,47145,1.0 -84047147,47147,1.0 -84047149,47149,1.0 -84047151,47151,1.0 -84047153,47153,1.0 -84047155,47155,1.0 -84047157,47157,1.0 -84047159,47159,1.0 -84047161,47161,1.0 -84047163,47163,1.0 -84047165,47165,1.0 -84047167,47167,1.0 -84047169,47169,1.0 -84047171,47171,1.0 -84047173,47173,1.0 -84047175,47175,1.0 -84047177,47177,1.0 -84047179,47179,1.0 -84047181,47181,1.0 -84047183,47183,1.0 -84047185,47185,1.0 -84047187,47187,1.0 -84047189,47189,1.0 -84048001,48001,1.0 -84048003,48003,1.0 -84048005,48005,1.0 -84048007,48007,1.0 -84048009,48009,1.0 -84048011,48011,1.0 -84048013,48013,1.0 -84048015,48015,1.0 -84048017,48017,1.0 -84048019,48019,1.0 -84048021,48021,1.0 -84048023,48023,1.0 -84048025,48025,1.0 -84048027,48027,1.0 -84048029,48029,1.0 -84048031,48031,1.0 -84048033,48033,1.0 -84048035,48035,1.0 -84048037,48037,1.0 -84048039,48039,1.0 -84048041,48041,1.0 -84048043,48043,1.0 -84048045,48045,1.0 -84048047,48047,1.0 -84048049,48049,1.0 -84048051,48051,1.0 -84048053,48053,1.0 -84048055,48055,1.0 -84048057,48057,1.0 -84048059,48059,1.0 -84048061,48061,1.0 -84048063,48063,1.0 -84048065,48065,1.0 -84048067,48067,1.0 -84048069,48069,1.0 -84048071,48071,1.0 -84048073,48073,1.0 -84048075,48075,1.0 -84048077,48077,1.0 -84048079,48079,1.0 -84048081,48081,1.0 -84048083,48083,1.0 -84048085,48085,1.0 -84048087,48087,1.0 -84048089,48089,1.0 -84048091,48091,1.0 -84048093,48093,1.0 -84048095,48095,1.0 -84048097,48097,1.0 -84048099,48099,1.0 -84048101,48101,1.0 -84048103,48103,1.0 -84048105,48105,1.0 -84048107,48107,1.0 -84048109,48109,1.0 -84048111,48111,1.0 -84048113,48113,1.0 -84048115,48115,1.0 -84048117,48117,1.0 -84048119,48119,1.0 -84048121,48121,1.0 -84048123,48123,1.0 -84048125,48125,1.0 -84048127,48127,1.0 -84048129,48129,1.0 -84048131,48131,1.0 -84048133,48133,1.0 -84048135,48135,1.0 -84048137,48137,1.0 -84048139,48139,1.0 -84048141,48141,1.0 -84048143,48143,1.0 -84048145,48145,1.0 -84048147,48147,1.0 -84048149,48149,1.0 -84048151,48151,1.0 -84048153,48153,1.0 -84048155,48155,1.0 -84048157,48157,1.0 -84048159,48159,1.0 -84048161,48161,1.0 -84048163,48163,1.0 -84048165,48165,1.0 -84048167,48167,1.0 -84048169,48169,1.0 -84048171,48171,1.0 -84048173,48173,1.0 -84048175,48175,1.0 -84048177,48177,1.0 -84048179,48179,1.0 -84048181,48181,1.0 -84048183,48183,1.0 -84048185,48185,1.0 -84048187,48187,1.0 -84048189,48189,1.0 -84048191,48191,1.0 -84048193,48193,1.0 -84048195,48195,1.0 -84048197,48197,1.0 -84048199,48199,1.0 -84048201,48201,1.0 -84048203,48203,1.0 -84048205,48205,1.0 -84048207,48207,1.0 -84048209,48209,1.0 -84048211,48211,1.0 -84048213,48213,1.0 -84048215,48215,1.0 -84048217,48217,1.0 -84048219,48219,1.0 -84048221,48221,1.0 -84048223,48223,1.0 -84048225,48225,1.0 -84048227,48227,1.0 -84048229,48229,1.0 -84048231,48231,1.0 -84048233,48233,1.0 -84048235,48235,1.0 -84048237,48237,1.0 -84048239,48239,1.0 -84048241,48241,1.0 -84048243,48243,1.0 -84048245,48245,1.0 -84048247,48247,1.0 -84048249,48249,1.0 -84048251,48251,1.0 -84048253,48253,1.0 -84048255,48255,1.0 -84048257,48257,1.0 -84048259,48259,1.0 -84048261,48261,1.0 -84048263,48263,1.0 -84048265,48265,1.0 -84048267,48267,1.0 -84048269,48269,1.0 -84048271,48271,1.0 -84048273,48273,1.0 -84048275,48275,1.0 -84048277,48277,1.0 -84048279,48279,1.0 -84048281,48281,1.0 -84048283,48283,1.0 -84048285,48285,1.0 -84048287,48287,1.0 -84048289,48289,1.0 -84048291,48291,1.0 -84048293,48293,1.0 -84048295,48295,1.0 -84048297,48297,1.0 -84048299,48299,1.0 -84048301,48301,1.0 -84048303,48303,1.0 -84048305,48305,1.0 -84048307,48307,1.0 -84048309,48309,1.0 -84048311,48311,1.0 -84048313,48313,1.0 -84048315,48315,1.0 -84048317,48317,1.0 -84048319,48319,1.0 -84048321,48321,1.0 -84048323,48323,1.0 -84048325,48325,1.0 -84048327,48327,1.0 -84048329,48329,1.0 -84048331,48331,1.0 -84048333,48333,1.0 -84048335,48335,1.0 -84048337,48337,1.0 -84048339,48339,1.0 -84048341,48341,1.0 -84048343,48343,1.0 -84048345,48345,1.0 -84048347,48347,1.0 -84048349,48349,1.0 -84048351,48351,1.0 -84048353,48353,1.0 -84048355,48355,1.0 -84048357,48357,1.0 -84048359,48359,1.0 -84048361,48361,1.0 -84048363,48363,1.0 -84048365,48365,1.0 -84048367,48367,1.0 -84048369,48369,1.0 -84048371,48371,1.0 -84048373,48373,1.0 -84048375,48375,1.0 -84048377,48377,1.0 -84048379,48379,1.0 -84048381,48381,1.0 -84048383,48383,1.0 -84048385,48385,1.0 -84048387,48387,1.0 -84048389,48389,1.0 -84048391,48391,1.0 -84048393,48393,1.0 -84048395,48395,1.0 -84048397,48397,1.0 -84048399,48399,1.0 -84048401,48401,1.0 -84048403,48403,1.0 -84048405,48405,1.0 -84048407,48407,1.0 -84048409,48409,1.0 -84048411,48411,1.0 -84048413,48413,1.0 -84048415,48415,1.0 -84048417,48417,1.0 -84048419,48419,1.0 -84048421,48421,1.0 -84048423,48423,1.0 -84048425,48425,1.0 -84048427,48427,1.0 -84048429,48429,1.0 -84048431,48431,1.0 -84048433,48433,1.0 -84048435,48435,1.0 -84048437,48437,1.0 -84048439,48439,1.0 -84048441,48441,1.0 -84048443,48443,1.0 -84048445,48445,1.0 -84048447,48447,1.0 -84048449,48449,1.0 -84048451,48451,1.0 -84048453,48453,1.0 -84048455,48455,1.0 -84048457,48457,1.0 -84048459,48459,1.0 -84048461,48461,1.0 -84048463,48463,1.0 -84048465,48465,1.0 -84048467,48467,1.0 -84048469,48469,1.0 -84048471,48471,1.0 -84048473,48473,1.0 -84048475,48475,1.0 -84048477,48477,1.0 -84048479,48479,1.0 -84048481,48481,1.0 -84048483,48483,1.0 -84048485,48485,1.0 -84048487,48487,1.0 -84048489,48489,1.0 -84048491,48491,1.0 -84048493,48493,1.0 -84048495,48495,1.0 -84048497,48497,1.0 -84048499,48499,1.0 -84048501,48501,1.0 -84048503,48503,1.0 -84048505,48505,1.0 -84048507,48507,1.0 -84049001,49001,1.0 -84049003,49003,1.0 -84049005,49005,1.0 -84049007,49007,1.0 -84049009,49009,1.0 -84049011,49011,1.0 -84049013,49013,1.0 -84049015,49015,1.0 -84049017,49017,1.0 -84049019,49019,1.0 -84049021,49021,1.0 -84049023,49023,1.0 -84049025,49025,1.0 -84049027,49027,1.0 -84049029,49029,1.0 -84049031,49031,1.0 -84049033,49033,1.0 -84049035,49035,1.0 -84049037,49037,1.0 -84049039,49039,1.0 -84049041,49041,1.0 -84049043,49043,1.0 -84049045,49045,1.0 -84049047,49047,1.0 -84049049,49049,1.0 -84049051,49051,1.0 -84049053,49053,1.0 -84049055,49055,1.0 -84049057,49057,1.0 -84050001,50001,1.0 -84050003,50003,1.0 -84050005,50005,1.0 -84050007,50007,1.0 -84050009,50009,1.0 -84050011,50011,1.0 -84050013,50013,1.0 -84050015,50015,1.0 -84050017,50017,1.0 -84050019,50019,1.0 -84050021,50021,1.0 -84050023,50023,1.0 -84050025,50025,1.0 -84050027,50027,1.0 -84051001,51001,1.0 -84051003,51003,1.0 -84051005,51005,1.0 -84051007,51007,1.0 -84051009,51009,1.0 -84051011,51011,1.0 -84051013,51013,1.0 -84051015,51015,1.0 -84051017,51017,1.0 -84051019,51019,1.0 -84051021,51021,1.0 -84051023,51023,1.0 -84051025,51025,1.0 -84051027,51027,1.0 -84051029,51029,1.0 -84051031,51031,1.0 -84051033,51033,1.0 -84051035,51035,1.0 -84051036,51036,1.0 -84051037,51037,1.0 -84051041,51041,1.0 -84051043,51043,1.0 -84051045,51045,1.0 -84051047,51047,1.0 -84051049,51049,1.0 -84051051,51051,1.0 -84051053,51053,1.0 -84051057,51057,1.0 -84051059,51059,1.0 -84051061,51061,1.0 -84051063,51063,1.0 -84051065,51065,1.0 -84051067,51067,1.0 -84051069,51069,1.0 -84051071,51071,1.0 -84051073,51073,1.0 -84051075,51075,1.0 -84051077,51077,1.0 -84051079,51079,1.0 -84051081,51081,1.0 -84051083,51083,1.0 -84051085,51085,1.0 -84051087,51087,1.0 -84051089,51089,1.0 -84051091,51091,1.0 -84051093,51093,1.0 -84051095,51095,1.0 -84051097,51097,1.0 -84051099,51099,1.0 -84051101,51101,1.0 -84051103,51103,1.0 -84051105,51105,1.0 -84051107,51107,1.0 -84051109,51109,1.0 -84051111,51111,1.0 -84051113,51113,1.0 -84051115,51115,1.0 -84051117,51117,1.0 -84051119,51119,1.0 -84051121,51121,1.0 -84051125,51125,1.0 -84051127,51127,1.0 -84051131,51131,1.0 -84051133,51133,1.0 -84051135,51135,1.0 -84051137,51137,1.0 -84051139,51139,1.0 -84051141,51141,1.0 -84051143,51143,1.0 -84051145,51145,1.0 -84051147,51147,1.0 -84051149,51149,1.0 -84051153,51153,1.0 -84051155,51155,1.0 -84051157,51157,1.0 -84051159,51159,1.0 -84051161,51161,1.0 -84051163,51163,1.0 -84051165,51165,1.0 -84051167,51167,1.0 -84051169,51169,1.0 -84051171,51171,1.0 -84051173,51173,1.0 -84051175,51175,1.0 -84051177,51177,1.0 -84051179,51179,1.0 -84051181,51181,1.0 -84051183,51183,1.0 -84051185,51185,1.0 -84051187,51187,1.0 -84051191,51191,1.0 -84051193,51193,1.0 -84051195,51195,1.0 -84051197,51197,1.0 -84051199,51199,1.0 -84051510,51510,1.0 -84051520,51520,1.0 -84051530,51530,1.0 -84051540,51540,1.0 -84051550,51550,1.0 -84051570,51570,1.0 -84051580,51580,1.0 -84051590,51590,1.0 -84051595,51595,1.0 -84051600,51600,1.0 -84051610,51610,1.0 -84051620,51620,1.0 -84051630,51630,1.0 -84051640,51640,1.0 -84051650,51650,1.0 -84051660,51660,1.0 -84051670,51670,1.0 -84051678,51678,1.0 -84051680,51680,1.0 -84051683,51683,1.0 -84051685,51685,1.0 -84051690,51690,1.0 -84051700,51700,1.0 -84051710,51710,1.0 -84051720,51720,1.0 -84051730,51730,1.0 -84051735,51735,1.0 -84051740,51740,1.0 -84051750,51750,1.0 -84051760,51760,1.0 -84051770,51770,1.0 -84051775,51775,1.0 -84051790,51790,1.0 -84051800,51800,1.0 -84051810,51810,1.0 -84051820,51820,1.0 -84051830,51830,1.0 -84051840,51840,1.0 -84053001,53001,1.0 -84053003,53003,1.0 -84053005,53005,1.0 -84053007,53007,1.0 -84053009,53009,1.0 -84053011,53011,1.0 -84053013,53013,1.0 -84053015,53015,1.0 -84053017,53017,1.0 -84053019,53019,1.0 -84053021,53021,1.0 -84053023,53023,1.0 -84053025,53025,1.0 -84053027,53027,1.0 -84053029,53029,1.0 -84053031,53031,1.0 -84053033,53033,1.0 -84053035,53035,1.0 -84053037,53037,1.0 -84053039,53039,1.0 -84053041,53041,1.0 -84053043,53043,1.0 -84053045,53045,1.0 -84053047,53047,1.0 -84053049,53049,1.0 -84053051,53051,1.0 -84053053,53053,1.0 -84053055,53055,1.0 -84053057,53057,1.0 -84053059,53059,1.0 -84053061,53061,1.0 -84053063,53063,1.0 -84053065,53065,1.0 -84053067,53067,1.0 -84053069,53069,1.0 -84053071,53071,1.0 -84053073,53073,1.0 -84053075,53075,1.0 -84053077,53077,1.0 -84054001,54001,1.0 -84054003,54003,1.0 -84054005,54005,1.0 -84054007,54007,1.0 -84054009,54009,1.0 -84054011,54011,1.0 -84054013,54013,1.0 -84054015,54015,1.0 -84054017,54017,1.0 -84054019,54019,1.0 -84054021,54021,1.0 -84054023,54023,1.0 -84054025,54025,1.0 -84054027,54027,1.0 -84054029,54029,1.0 -84054031,54031,1.0 -84054033,54033,1.0 -84054035,54035,1.0 -84054037,54037,1.0 -84054039,54039,1.0 -84054041,54041,1.0 -84054043,54043,1.0 -84054045,54045,1.0 -84054047,54047,1.0 -84054049,54049,1.0 -84054051,54051,1.0 -84054053,54053,1.0 -84054055,54055,1.0 -84054057,54057,1.0 -84054059,54059,1.0 -84054061,54061,1.0 -84054063,54063,1.0 -84054065,54065,1.0 -84054067,54067,1.0 -84054069,54069,1.0 -84054071,54071,1.0 -84054073,54073,1.0 -84054075,54075,1.0 -84054077,54077,1.0 -84054079,54079,1.0 -84054081,54081,1.0 -84054083,54083,1.0 -84054085,54085,1.0 -84054087,54087,1.0 -84054089,54089,1.0 -84054091,54091,1.0 -84054093,54093,1.0 -84054095,54095,1.0 -84054097,54097,1.0 -84054099,54099,1.0 -84054101,54101,1.0 -84054103,54103,1.0 -84054105,54105,1.0 -84054107,54107,1.0 -84054109,54109,1.0 -84055001,55001,1.0 -84055003,55003,1.0 -84055005,55005,1.0 -84055007,55007,1.0 -84055009,55009,1.0 -84055011,55011,1.0 -84055013,55013,1.0 -84055015,55015,1.0 -84055017,55017,1.0 -84055019,55019,1.0 -84055021,55021,1.0 -84055023,55023,1.0 -84055025,55025,1.0 -84055027,55027,1.0 -84055029,55029,1.0 -84055031,55031,1.0 -84055033,55033,1.0 -84055035,55035,1.0 -84055037,55037,1.0 -84055039,55039,1.0 -84055041,55041,1.0 -84055043,55043,1.0 -84055045,55045,1.0 -84055047,55047,1.0 -84055049,55049,1.0 -84055051,55051,1.0 -84055053,55053,1.0 -84055055,55055,1.0 -84055057,55057,1.0 -84055059,55059,1.0 -84055061,55061,1.0 -84055063,55063,1.0 -84055065,55065,1.0 -84055067,55067,1.0 -84055069,55069,1.0 -84055071,55071,1.0 -84055073,55073,1.0 -84055075,55075,1.0 -84055077,55077,1.0 -84055078,55078,1.0 -84055079,55079,1.0 -84055081,55081,1.0 -84055083,55083,1.0 -84055085,55085,1.0 -84055087,55087,1.0 -84055089,55089,1.0 -84055091,55091,1.0 -84055093,55093,1.0 -84055095,55095,1.0 -84055097,55097,1.0 -84055099,55099,1.0 -84055101,55101,1.0 -84055103,55103,1.0 -84055105,55105,1.0 -84055107,55107,1.0 -84055109,55109,1.0 -84055111,55111,1.0 -84055113,55113,1.0 -84055115,55115,1.0 -84055117,55117,1.0 -84055119,55119,1.0 -84055121,55121,1.0 -84055123,55123,1.0 -84055125,55125,1.0 -84055127,55127,1.0 -84055129,55129,1.0 -84055131,55131,1.0 -84055133,55133,1.0 -84055135,55135,1.0 -84055137,55137,1.0 -84055139,55139,1.0 -84055141,55141,1.0 -84056001,56001,1.0 -84056003,56003,1.0 -84056005,56005,1.0 -84056007,56007,1.0 -84056009,56009,1.0 -84056011,56011,1.0 -84056013,56013,1.0 -84056015,56015,1.0 -84056017,56017,1.0 -84056019,56019,1.0 -84056021,56021,1.0 -84056023,56023,1.0 -84056025,56025,1.0 -84056027,56027,1.0 -84056029,56029,1.0 -84056031,56031,1.0 -84056033,56033,1.0 -84056035,56035,1.0 -84056037,56037,1.0 -84056039,56039,1.0 -84056041,56041,1.0 -84056043,56043,1.0 -84056045,56045,1.0 -84070002,25007,0.6191260718163777 -84070002,25019,0.38087392818362226 -84070003,29037,0.09169349717069915 -84070003,29047,0.20457149388375118 -84070003,29095,0.6214027691108004 -84070003,29165,0.08233223983474929 -84070015,49000,1.0 -84070016,49000,1.0 -84070017,49000,1.0 -84070018,49000,1.0 -84070019,49000,1.0 -84070020,49000,1.0 -84080001,01000,1.0 -84080002,02000,1.0 -84080003,03000,1.0 -84080004,04000,1.0 -84080005,05000,1.0 -84080006,06000,1.0 -84080007,07000,1.0 -84080008,08000,1.0 -84080009,09000,1.0 -84080010,10000,1.0 -84080011,11000,1.0 -84080012,12000,1.0 -84080013,13000,1.0 -84080014,14000,1.0 -84080015,15000,1.0 -84080016,16000,1.0 -84080017,17000,1.0 -84080018,18000,1.0 -84080019,19000,1.0 -84080020,20000,1.0 -84080021,21000,1.0 -84080022,22000,1.0 -84080023,23000,1.0 -84080024,24000,1.0 -84080025,25000,1.0 -84080026,26000,1.0 -84080027,27000,1.0 -84080028,28000,1.0 -84080029,29000,1.0 -84080030,30000,1.0 -84080031,31000,1.0 -84080032,32000,1.0 -84080033,33000,1.0 -84080034,34000,1.0 -84080035,35000,1.0 -84080036,36000,1.0 -84080037,37000,1.0 -84080038,38000,1.0 -84080039,39000,1.0 -84080040,40000,1.0 -84080041,41000,1.0 -84080042,42000,1.0 -84080043,43000,1.0 -84080044,44000,1.0 -84080045,45000,1.0 -84080046,46000,1.0 -84080047,47000,1.0 -84080048,48000,1.0 -84080049,49000,1.0 -84080050,50000,1.0 -84080051,51000,1.0 -84080052,52000,1.0 -84080053,53000,1.0 -84080054,54000,1.0 -84080055,55000,1.0 -84080056,56000,1.0 -84090001,01000,1.0 -84090002,02000,1.0 -84090003,03000,1.0 -84090004,04000,1.0 -84090005,05000,1.0 -84090006,06000,1.0 -84090007,07000,1.0 -84090008,08000,1.0 -84090009,09000,1.0 -84090010,10000,1.0 -84090011,11000,1.0 -84090012,12000,1.0 -84090013,13000,1.0 -84090014,14000,1.0 -84090015,15000,1.0 -84090016,16000,1.0 -84090017,17000,1.0 -84090018,18000,1.0 -84090019,19000,1.0 -84090020,20000,1.0 -84090021,21000,1.0 -84090022,22000,1.0 -84090023,23000,1.0 -84090024,24000,1.0 -84090025,25000,1.0 -84090026,26000,1.0 -84090027,27000,1.0 -84090028,28000,1.0 -84090029,29000,1.0 -84090030,30000,1.0 -84090031,31000,1.0 -84090032,32000,1.0 -84090033,33000,1.0 -84090034,34000,1.0 -84090035,35000,1.0 -84090036,36000,1.0 -84090037,37000,1.0 -84090038,38000,1.0 -84090039,39000,1.0 -84090040,40000,1.0 -84090041,41000,1.0 -84090042,42000,1.0 -84090043,43000,1.0 -84090044,44000,1.0 -84090045,45000,1.0 -84090046,46000,1.0 -84090047,47000,1.0 -84090048,48000,1.0 -84090049,49000,1.0 -84090050,50000,1.0 -84090051,51000,1.0 -84090052,52000,1.0 -84090053,53000,1.0 -84090054,54000,1.0 -84090055,55000,1.0 -84090056,56000,1.0 -850,78000,1.0 diff --git a/_delphi_utils_python/delphi_utils/data/2020/jhu_uid_fips_table.csv b/_delphi_utils_python/delphi_utils/data/2020/jhu_uid_fips_table.csv deleted file mode 100644 index 4260c1f6b..000000000 --- a/_delphi_utils_python/delphi_utils/data/2020/jhu_uid_fips_table.csv +++ /dev/null @@ -1,3405 +0,0 @@ -jhu_uid,fips,weight -16,60000,1.0 -316,66000,1.0 -580,69000,1.0 -630,72000,1.0 -63072001,72001,1.0 -63072003,72003,1.0 -63072005,72005,1.0 -63072007,72007,1.0 -63072009,72009,1.0 -63072011,72011,1.0 -63072013,72013,1.0 -63072015,72015,1.0 -63072017,72017,1.0 -63072019,72019,1.0 -63072021,72021,1.0 -63072023,72023,1.0 -63072025,72025,1.0 -63072027,72027,1.0 -63072029,72029,1.0 -63072031,72031,1.0 -63072033,72033,1.0 -63072035,72035,1.0 -63072037,72037,1.0 -63072039,72039,1.0 -63072041,72041,1.0 -63072043,72043,1.0 -63072045,72045,1.0 -63072047,72047,1.0 -63072049,72049,1.0 -63072051,72051,1.0 -63072053,72053,1.0 -63072054,72054,1.0 -63072055,72055,1.0 -63072057,72057,1.0 -63072059,72059,1.0 -63072061,72061,1.0 -63072063,72063,1.0 -63072065,72065,1.0 -63072067,72067,1.0 -63072069,72069,1.0 -63072071,72071,1.0 -63072073,72073,1.0 -63072075,72075,1.0 -63072077,72077,1.0 -63072079,72079,1.0 -63072081,72081,1.0 -63072083,72083,1.0 -63072085,72085,1.0 -63072087,72087,1.0 -63072089,72089,1.0 -63072091,72091,1.0 -63072093,72093,1.0 -63072095,72095,1.0 -63072097,72097,1.0 -63072099,72099,1.0 -63072101,72101,1.0 -63072103,72103,1.0 -63072105,72105,1.0 -63072107,72107,1.0 -63072109,72109,1.0 -63072111,72111,1.0 -63072113,72113,1.0 -63072115,72115,1.0 -63072117,72117,1.0 -63072119,72119,1.0 -63072121,72121,1.0 -63072123,72123,1.0 -63072125,72125,1.0 -63072127,72127,1.0 -63072129,72129,1.0 -63072131,72131,1.0 -63072133,72133,1.0 -63072135,72135,1.0 -63072137,72137,1.0 -63072139,72139,1.0 -63072141,72141,1.0 -63072143,72143,1.0 -63072145,72145,1.0 -63072147,72147,1.0 -63072149,72149,1.0 -63072151,72151,1.0 -63072153,72153,1.0 -63072888,72000,1.0 -63072999,72000,1.0 -84000001,01000,1.0 -84000002,02000,1.0 -84000004,04000,1.0 -84000005,05000,1.0 -84000006,06000,1.0 -84000008,08000,1.0 -84000009,09000,1.0 -84000010,10000,1.0 -84000011,11000,1.0 -84000012,12000,1.0 -84000013,13000,1.0 -84000015,15000,1.0 -84000016,16000,1.0 -84000017,17000,1.0 -84000018,18000,1.0 -84000019,19000,1.0 -84000020,20000,1.0 -84000021,21000,1.0 -84000022,22000,1.0 -84000023,23000,1.0 -84000024,24000,1.0 -84000025,25000,1.0 -84000026,26000,1.0 -84000027,27000,1.0 -84000028,28000,1.0 -84000029,29000,1.0 -84000030,30000,1.0 -84000031,31000,1.0 -84000032,32000,1.0 -84000033,33000,1.0 -84000034,34000,1.0 -84000035,35000,1.0 -84000036,36000,1.0 -84000037,37000,1.0 -84000038,38000,1.0 -84000039,39000,1.0 -84000040,40000,1.0 -84000041,41000,1.0 -84000042,42000,1.0 -84000044,44000,1.0 -84000045,45000,1.0 -84000046,46000,1.0 -84000047,47000,1.0 -84000048,48000,1.0 -84000049,49000,1.0 -84000050,50000,1.0 -84000051,51000,1.0 -84000053,53000,1.0 -84000054,54000,1.0 -84000055,55000,1.0 -84000056,56000,1.0 -84001001,01001,1.0 -84001003,01003,1.0 -84001005,01005,1.0 -84001007,01007,1.0 -84001009,01009,1.0 -84001011,01011,1.0 -84001013,01013,1.0 -84001015,01015,1.0 -84001017,01017,1.0 -84001019,01019,1.0 -84001021,01021,1.0 -84001023,01023,1.0 -84001025,01025,1.0 -84001027,01027,1.0 -84001029,01029,1.0 -84001031,01031,1.0 -84001033,01033,1.0 -84001035,01035,1.0 -84001037,01037,1.0 -84001039,01039,1.0 -84001041,01041,1.0 -84001043,01043,1.0 -84001045,01045,1.0 -84001047,01047,1.0 -84001049,01049,1.0 -84001051,01051,1.0 -84001053,01053,1.0 -84001055,01055,1.0 -84001057,01057,1.0 -84001059,01059,1.0 -84001061,01061,1.0 -84001063,01063,1.0 -84001065,01065,1.0 -84001067,01067,1.0 -84001069,01069,1.0 -84001071,01071,1.0 -84001073,01073,1.0 -84001075,01075,1.0 -84001077,01077,1.0 -84001079,01079,1.0 -84001081,01081,1.0 -84001083,01083,1.0 -84001085,01085,1.0 -84001087,01087,1.0 -84001089,01089,1.0 -84001091,01091,1.0 -84001093,01093,1.0 -84001095,01095,1.0 -84001097,01097,1.0 -84001099,01099,1.0 -84001101,01101,1.0 -84001103,01103,1.0 -84001105,01105,1.0 -84001107,01107,1.0 -84001109,01109,1.0 -84001111,01111,1.0 -84001113,01113,1.0 -84001115,01115,1.0 -84001117,01117,1.0 -84001119,01119,1.0 -84001121,01121,1.0 -84001123,01123,1.0 -84001125,01125,1.0 -84001127,01127,1.0 -84001129,01129,1.0 -84001131,01131,1.0 -84001133,01133,1.0 -84002013,02013,1.0 -84002016,02016,1.0 -84002020,02020,1.0 -84002050,02050,1.0 -84002060,02060,1.0 -84002063,02063,1.0 -84002066,02066,1.0 -84002068,02068,1.0 -84002070,02070,1.0 -84002090,02090,1.0 -84002100,02100,1.0 -84002105,02105,1.0 -84002110,02110,1.0 -84002122,02122,1.0 -84002130,02130,1.0 -84002150,02150,1.0 -84002158,02270,1.0 -84002164,02164,1.0 -84002170,02170,1.0 -84002180,02180,1.0 -84002185,02185,1.0 -84002188,02188,1.0 -84002195,02195,1.0 -84002198,02198,1.0 -84002220,02220,1.0 -84002230,02230,1.0 -84002240,02240,1.0 -84002261,02261,1.0 -84002275,02275,1.0 -84002282,02282,1.0 -84002290,02290,1.0 -84004001,04001,1.0 -84004003,04003,1.0 -84004005,04005,1.0 -84004007,04007,1.0 -84004009,04009,1.0 -84004011,04011,1.0 -84004012,04012,1.0 -84004013,04013,1.0 -84004015,04015,1.0 -84004017,04017,1.0 -84004019,04019,1.0 -84004021,04021,1.0 -84004023,04023,1.0 -84004025,04025,1.0 -84004027,04027,1.0 -84005001,05001,1.0 -84005003,05003,1.0 -84005005,05005,1.0 -84005007,05007,1.0 -84005009,05009,1.0 -84005011,05011,1.0 -84005013,05013,1.0 -84005015,05015,1.0 -84005017,05017,1.0 -84005019,05019,1.0 -84005021,05021,1.0 -84005023,05023,1.0 -84005025,05025,1.0 -84005027,05027,1.0 -84005029,05029,1.0 -84005031,05031,1.0 -84005033,05033,1.0 -84005035,05035,1.0 -84005037,05037,1.0 -84005039,05039,1.0 -84005041,05041,1.0 -84005043,05043,1.0 -84005045,05045,1.0 -84005047,05047,1.0 -84005049,05049,1.0 -84005051,05051,1.0 -84005053,05053,1.0 -84005055,05055,1.0 -84005057,05057,1.0 -84005059,05059,1.0 -84005061,05061,1.0 -84005063,05063,1.0 -84005065,05065,1.0 -84005067,05067,1.0 -84005069,05069,1.0 -84005071,05071,1.0 -84005073,05073,1.0 -84005075,05075,1.0 -84005077,05077,1.0 -84005079,05079,1.0 -84005081,05081,1.0 -84005083,05083,1.0 -84005085,05085,1.0 -84005087,05087,1.0 -84005089,05089,1.0 -84005091,05091,1.0 -84005093,05093,1.0 -84005095,05095,1.0 -84005097,05097,1.0 -84005099,05099,1.0 -84005101,05101,1.0 -84005103,05103,1.0 -84005105,05105,1.0 -84005107,05107,1.0 -84005109,05109,1.0 -84005111,05111,1.0 -84005113,05113,1.0 -84005115,05115,1.0 -84005117,05117,1.0 -84005119,05119,1.0 -84005121,05121,1.0 -84005123,05123,1.0 -84005125,05125,1.0 -84005127,05127,1.0 -84005129,05129,1.0 -84005131,05131,1.0 -84005133,05133,1.0 -84005135,05135,1.0 -84005137,05137,1.0 -84005139,05139,1.0 -84005141,05141,1.0 -84005143,05143,1.0 -84005145,05145,1.0 -84005147,05147,1.0 -84005149,05149,1.0 -84006001,06001,1.0 -84006003,06003,1.0 -84006005,06005,1.0 -84006007,06007,1.0 -84006009,06009,1.0 -84006011,06011,1.0 -84006013,06013,1.0 -84006015,06015,1.0 -84006017,06017,1.0 -84006019,06019,1.0 -84006021,06021,1.0 -84006023,06023,1.0 -84006025,06025,1.0 -84006027,06027,1.0 -84006029,06029,1.0 -84006031,06031,1.0 -84006033,06033,1.0 -84006035,06035,1.0 -84006037,06037,1.0 -84006039,06039,1.0 -84006041,06041,1.0 -84006043,06043,1.0 -84006045,06045,1.0 -84006047,06047,1.0 -84006049,06049,1.0 -84006051,06051,1.0 -84006053,06053,1.0 -84006055,06055,1.0 -84006057,06057,1.0 -84006059,06059,1.0 -84006061,06061,1.0 -84006063,06063,1.0 -84006065,06065,1.0 -84006067,06067,1.0 -84006069,06069,1.0 -84006071,06071,1.0 -84006073,06073,1.0 -84006075,06075,1.0 -84006077,06077,1.0 -84006079,06079,1.0 -84006081,06081,1.0 -84006083,06083,1.0 -84006085,06085,1.0 -84006087,06087,1.0 -84006089,06089,1.0 -84006091,06091,1.0 -84006093,06093,1.0 -84006095,06095,1.0 -84006097,06097,1.0 -84006099,06099,1.0 -84006101,06101,1.0 -84006103,06103,1.0 -84006105,06105,1.0 -84006107,06107,1.0 -84006109,06109,1.0 -84006111,06111,1.0 -84006113,06113,1.0 -84006115,06115,1.0 -84008001,08001,1.0 -84008003,08003,1.0 -84008005,08005,1.0 -84008007,08007,1.0 -84008009,08009,1.0 -84008011,08011,1.0 -84008013,08013,1.0 -84008014,08014,1.0 -84008015,08015,1.0 -84008017,08017,1.0 -84008019,08019,1.0 -84008021,08021,1.0 -84008023,08023,1.0 -84008025,08025,1.0 -84008027,08027,1.0 -84008029,08029,1.0 -84008031,08031,1.0 -84008033,08033,1.0 -84008035,08035,1.0 -84008037,08037,1.0 -84008039,08039,1.0 -84008041,08041,1.0 -84008043,08043,1.0 -84008045,08045,1.0 -84008047,08047,1.0 -84008049,08049,1.0 -84008051,08051,1.0 -84008053,08053,1.0 -84008055,08055,1.0 -84008057,08057,1.0 -84008059,08059,1.0 -84008061,08061,1.0 -84008063,08063,1.0 -84008065,08065,1.0 -84008067,08067,1.0 -84008069,08069,1.0 -84008071,08071,1.0 -84008073,08073,1.0 -84008075,08075,1.0 -84008077,08077,1.0 -84008079,08079,1.0 -84008081,08081,1.0 -84008083,08083,1.0 -84008085,08085,1.0 -84008087,08087,1.0 -84008089,08089,1.0 -84008091,08091,1.0 -84008093,08093,1.0 -84008095,08095,1.0 -84008097,08097,1.0 -84008099,08099,1.0 -84008101,08101,1.0 -84008103,08103,1.0 -84008105,08105,1.0 -84008107,08107,1.0 -84008109,08109,1.0 -84008111,08111,1.0 -84008113,08113,1.0 -84008115,08115,1.0 -84008117,08117,1.0 -84008119,08119,1.0 -84008121,08121,1.0 -84008123,08123,1.0 -84008125,08125,1.0 -84009001,09001,1.0 -84009003,09003,1.0 -84009005,09005,1.0 -84009007,09007,1.0 -84009009,09009,1.0 -84009011,09011,1.0 -84009013,09013,1.0 -84009015,09015,1.0 -84010001,10001,1.0 -84010003,10003,1.0 -84010005,10005,1.0 -84011001,11001,1.0 -84012001,12001,1.0 -84012003,12003,1.0 -84012005,12005,1.0 -84012007,12007,1.0 -84012009,12009,1.0 -84012011,12011,1.0 -84012013,12013,1.0 -84012015,12015,1.0 -84012017,12017,1.0 -84012019,12019,1.0 -84012021,12021,1.0 -84012023,12023,1.0 -84012027,12027,1.0 -84012029,12029,1.0 -84012031,12031,1.0 -84012033,12033,1.0 -84012035,12035,1.0 -84012037,12037,1.0 -84012039,12039,1.0 -84012041,12041,1.0 -84012043,12043,1.0 -84012045,12045,1.0 -84012047,12047,1.0 -84012049,12049,1.0 -84012051,12051,1.0 -84012053,12053,1.0 -84012055,12055,1.0 -84012057,12057,1.0 -84012059,12059,1.0 -84012061,12061,1.0 -84012063,12063,1.0 -84012065,12065,1.0 -84012067,12067,1.0 -84012069,12069,1.0 -84012071,12071,1.0 -84012073,12073,1.0 -84012075,12075,1.0 -84012077,12077,1.0 -84012079,12079,1.0 -84012081,12081,1.0 -84012083,12083,1.0 -84012085,12085,1.0 -84012086,12086,1.0 -84012087,12087,1.0 -84012089,12089,1.0 -84012091,12091,1.0 -84012093,12093,1.0 -84012095,12095,1.0 -84012097,12097,1.0 -84012099,12099,1.0 -84012101,12101,1.0 -84012103,12103,1.0 -84012105,12105,1.0 -84012107,12107,1.0 -84012109,12109,1.0 -84012111,12111,1.0 -84012113,12113,1.0 -84012115,12115,1.0 -84012117,12117,1.0 -84012119,12119,1.0 -84012121,12121,1.0 -84012123,12123,1.0 -84012125,12125,1.0 -84012127,12127,1.0 -84012129,12129,1.0 -84012131,12131,1.0 -84012133,12133,1.0 -84013001,13001,1.0 -84013003,13003,1.0 -84013005,13005,1.0 -84013007,13007,1.0 -84013009,13009,1.0 -84013011,13011,1.0 -84013013,13013,1.0 -84013015,13015,1.0 -84013017,13017,1.0 -84013019,13019,1.0 -84013021,13021,1.0 -84013023,13023,1.0 -84013025,13025,1.0 -84013027,13027,1.0 -84013029,13029,1.0 -84013031,13031,1.0 -84013033,13033,1.0 -84013035,13035,1.0 -84013037,13037,1.0 -84013039,13039,1.0 -84013043,13043,1.0 -84013045,13045,1.0 -84013047,13047,1.0 -84013049,13049,1.0 -84013051,13051,1.0 -84013053,13053,1.0 -84013055,13055,1.0 -84013057,13057,1.0 -84013059,13059,1.0 -84013061,13061,1.0 -84013063,13063,1.0 -84013065,13065,1.0 -84013067,13067,1.0 -84013069,13069,1.0 -84013071,13071,1.0 -84013073,13073,1.0 -84013075,13075,1.0 -84013077,13077,1.0 -84013079,13079,1.0 -84013081,13081,1.0 -84013083,13083,1.0 -84013085,13085,1.0 -84013087,13087,1.0 -84013089,13089,1.0 -84013091,13091,1.0 -84013093,13093,1.0 -84013095,13095,1.0 -84013097,13097,1.0 -84013099,13099,1.0 -84013101,13101,1.0 -84013103,13103,1.0 -84013105,13105,1.0 -84013107,13107,1.0 -84013109,13109,1.0 -84013111,13111,1.0 -84013113,13113,1.0 -84013115,13115,1.0 -84013117,13117,1.0 -84013119,13119,1.0 -84013121,13121,1.0 -84013123,13123,1.0 -84013125,13125,1.0 -84013127,13127,1.0 -84013129,13129,1.0 -84013131,13131,1.0 -84013133,13133,1.0 -84013135,13135,1.0 -84013137,13137,1.0 -84013139,13139,1.0 -84013141,13141,1.0 -84013143,13143,1.0 -84013145,13145,1.0 -84013147,13147,1.0 -84013149,13149,1.0 -84013151,13151,1.0 -84013153,13153,1.0 -84013155,13155,1.0 -84013157,13157,1.0 -84013159,13159,1.0 -84013161,13161,1.0 -84013163,13163,1.0 -84013165,13165,1.0 -84013167,13167,1.0 -84013169,13169,1.0 -84013171,13171,1.0 -84013173,13173,1.0 -84013175,13175,1.0 -84013177,13177,1.0 -84013179,13179,1.0 -84013181,13181,1.0 -84013183,13183,1.0 -84013185,13185,1.0 -84013187,13187,1.0 -84013189,13189,1.0 -84013191,13191,1.0 -84013193,13193,1.0 -84013195,13195,1.0 -84013197,13197,1.0 -84013199,13199,1.0 -84013201,13201,1.0 -84013205,13205,1.0 -84013207,13207,1.0 -84013209,13209,1.0 -84013211,13211,1.0 -84013213,13213,1.0 -84013215,13215,1.0 -84013217,13217,1.0 -84013219,13219,1.0 -84013221,13221,1.0 -84013223,13223,1.0 -84013225,13225,1.0 -84013227,13227,1.0 -84013229,13229,1.0 -84013231,13231,1.0 -84013233,13233,1.0 -84013235,13235,1.0 -84013237,13237,1.0 -84013239,13239,1.0 -84013241,13241,1.0 -84013243,13243,1.0 -84013245,13245,1.0 -84013247,13247,1.0 -84013249,13249,1.0 -84013251,13251,1.0 -84013253,13253,1.0 -84013255,13255,1.0 -84013257,13257,1.0 -84013259,13259,1.0 -84013261,13261,1.0 -84013263,13263,1.0 -84013265,13265,1.0 -84013267,13267,1.0 -84013269,13269,1.0 -84013271,13271,1.0 -84013273,13273,1.0 -84013275,13275,1.0 -84013277,13277,1.0 -84013279,13279,1.0 -84013281,13281,1.0 -84013283,13283,1.0 -84013285,13285,1.0 -84013287,13287,1.0 -84013289,13289,1.0 -84013291,13291,1.0 -84013293,13293,1.0 -84013295,13295,1.0 -84013297,13297,1.0 -84013299,13299,1.0 -84013301,13301,1.0 -84013303,13303,1.0 -84013305,13305,1.0 -84013307,13307,1.0 -84013309,13309,1.0 -84013311,13311,1.0 -84013313,13313,1.0 -84013315,13315,1.0 -84013317,13317,1.0 -84013319,13319,1.0 -84013321,13321,1.0 -84015001,15001,1.0 -84015003,15003,1.0 -84015005,15005,1.0 -84015007,15007,1.0 -84015009,15009,1.0 -84016001,16001,1.0 -84016003,16003,1.0 -84016005,16005,1.0 -84016007,16007,1.0 -84016009,16009,1.0 -84016011,16011,1.0 -84016013,16013,1.0 -84016015,16015,1.0 -84016017,16017,1.0 -84016019,16019,1.0 -84016021,16021,1.0 -84016023,16023,1.0 -84016025,16025,1.0 -84016027,16027,1.0 -84016029,16029,1.0 -84016031,16031,1.0 -84016033,16033,1.0 -84016035,16035,1.0 -84016037,16037,1.0 -84016039,16039,1.0 -84016041,16041,1.0 -84016043,16043,1.0 -84016045,16045,1.0 -84016047,16047,1.0 -84016049,16049,1.0 -84016051,16051,1.0 -84016053,16053,1.0 -84016055,16055,1.0 -84016057,16057,1.0 -84016059,16059,1.0 -84016061,16061,1.0 -84016063,16063,1.0 -84016065,16065,1.0 -84016067,16067,1.0 -84016069,16069,1.0 -84016071,16071,1.0 -84016073,16073,1.0 -84016075,16075,1.0 -84016077,16077,1.0 -84016079,16079,1.0 -84016081,16081,1.0 -84016083,16083,1.0 -84016085,16085,1.0 -84016087,16087,1.0 -84017001,17001,1.0 -84017003,17003,1.0 -84017005,17005,1.0 -84017007,17007,1.0 -84017009,17009,1.0 -84017011,17011,1.0 -84017013,17013,1.0 -84017015,17015,1.0 -84017017,17017,1.0 -84017019,17019,1.0 -84017021,17021,1.0 -84017023,17023,1.0 -84017025,17025,1.0 -84017027,17027,1.0 -84017029,17029,1.0 -84017031,17031,1.0 -84017033,17033,1.0 -84017035,17035,1.0 -84017037,17037,1.0 -84017039,17039,1.0 -84017041,17041,1.0 -84017043,17043,1.0 -84017045,17045,1.0 -84017047,17047,1.0 -84017049,17049,1.0 -84017051,17051,1.0 -84017053,17053,1.0 -84017055,17055,1.0 -84017057,17057,1.0 -84017059,17059,1.0 -84017061,17061,1.0 -84017063,17063,1.0 -84017065,17065,1.0 -84017067,17067,1.0 -84017069,17069,1.0 -84017071,17071,1.0 -84017073,17073,1.0 -84017075,17075,1.0 -84017077,17077,1.0 -84017079,17079,1.0 -84017081,17081,1.0 -84017083,17083,1.0 -84017085,17085,1.0 -84017087,17087,1.0 -84017089,17089,1.0 -84017091,17091,1.0 -84017093,17093,1.0 -84017095,17095,1.0 -84017097,17097,1.0 -84017099,17099,1.0 -84017101,17101,1.0 -84017103,17103,1.0 -84017105,17105,1.0 -84017107,17107,1.0 -84017109,17109,1.0 -84017111,17111,1.0 -84017113,17113,1.0 -84017115,17115,1.0 -84017117,17117,1.0 -84017119,17119,1.0 -84017121,17121,1.0 -84017123,17123,1.0 -84017125,17125,1.0 -84017127,17127,1.0 -84017129,17129,1.0 -84017131,17131,1.0 -84017133,17133,1.0 -84017135,17135,1.0 -84017137,17137,1.0 -84017139,17139,1.0 -84017141,17141,1.0 -84017143,17143,1.0 -84017145,17145,1.0 -84017147,17147,1.0 -84017149,17149,1.0 -84017151,17151,1.0 -84017153,17153,1.0 -84017155,17155,1.0 -84017157,17157,1.0 -84017159,17159,1.0 -84017161,17161,1.0 -84017163,17163,1.0 -84017165,17165,1.0 -84017167,17167,1.0 -84017169,17169,1.0 -84017171,17171,1.0 -84017173,17173,1.0 -84017175,17175,1.0 -84017177,17177,1.0 -84017179,17179,1.0 -84017181,17181,1.0 -84017183,17183,1.0 -84017185,17185,1.0 -84017187,17187,1.0 -84017189,17189,1.0 -84017191,17191,1.0 -84017193,17193,1.0 -84017195,17195,1.0 -84017197,17197,1.0 -84017199,17199,1.0 -84017201,17201,1.0 -84017203,17203,1.0 -84018001,18001,1.0 -84018003,18003,1.0 -84018005,18005,1.0 -84018007,18007,1.0 -84018009,18009,1.0 -84018011,18011,1.0 -84018013,18013,1.0 -84018015,18015,1.0 -84018017,18017,1.0 -84018019,18019,1.0 -84018021,18021,1.0 -84018023,18023,1.0 -84018025,18025,1.0 -84018027,18027,1.0 -84018029,18029,1.0 -84018031,18031,1.0 -84018033,18033,1.0 -84018035,18035,1.0 -84018037,18037,1.0 -84018039,18039,1.0 -84018041,18041,1.0 -84018043,18043,1.0 -84018045,18045,1.0 -84018047,18047,1.0 -84018049,18049,1.0 -84018051,18051,1.0 -84018053,18053,1.0 -84018055,18055,1.0 -84018057,18057,1.0 -84018059,18059,1.0 -84018061,18061,1.0 -84018063,18063,1.0 -84018065,18065,1.0 -84018067,18067,1.0 -84018069,18069,1.0 -84018071,18071,1.0 -84018073,18073,1.0 -84018075,18075,1.0 -84018077,18077,1.0 -84018079,18079,1.0 -84018081,18081,1.0 -84018083,18083,1.0 -84018085,18085,1.0 -84018087,18087,1.0 -84018089,18089,1.0 -84018091,18091,1.0 -84018093,18093,1.0 -84018095,18095,1.0 -84018097,18097,1.0 -84018099,18099,1.0 -84018101,18101,1.0 -84018103,18103,1.0 -84018105,18105,1.0 -84018107,18107,1.0 -84018109,18109,1.0 -84018111,18111,1.0 -84018113,18113,1.0 -84018115,18115,1.0 -84018117,18117,1.0 -84018119,18119,1.0 -84018121,18121,1.0 -84018123,18123,1.0 -84018125,18125,1.0 -84018127,18127,1.0 -84018129,18129,1.0 -84018131,18131,1.0 -84018133,18133,1.0 -84018135,18135,1.0 -84018137,18137,1.0 -84018139,18139,1.0 -84018141,18141,1.0 -84018143,18143,1.0 -84018145,18145,1.0 -84018147,18147,1.0 -84018149,18149,1.0 -84018151,18151,1.0 -84018153,18153,1.0 -84018155,18155,1.0 -84018157,18157,1.0 -84018159,18159,1.0 -84018161,18161,1.0 -84018163,18163,1.0 -84018165,18165,1.0 -84018167,18167,1.0 -84018169,18169,1.0 -84018171,18171,1.0 -84018173,18173,1.0 -84018175,18175,1.0 -84018177,18177,1.0 -84018179,18179,1.0 -84018181,18181,1.0 -84018183,18183,1.0 -84019001,19001,1.0 -84019003,19003,1.0 -84019005,19005,1.0 -84019007,19007,1.0 -84019009,19009,1.0 -84019011,19011,1.0 -84019013,19013,1.0 -84019015,19015,1.0 -84019017,19017,1.0 -84019019,19019,1.0 -84019021,19021,1.0 -84019023,19023,1.0 -84019025,19025,1.0 -84019027,19027,1.0 -84019029,19029,1.0 -84019031,19031,1.0 -84019033,19033,1.0 -84019035,19035,1.0 -84019037,19037,1.0 -84019039,19039,1.0 -84019041,19041,1.0 -84019043,19043,1.0 -84019045,19045,1.0 -84019047,19047,1.0 -84019049,19049,1.0 -84019051,19051,1.0 -84019053,19053,1.0 -84019055,19055,1.0 -84019057,19057,1.0 -84019059,19059,1.0 -84019061,19061,1.0 -84019063,19063,1.0 -84019065,19065,1.0 -84019067,19067,1.0 -84019069,19069,1.0 -84019071,19071,1.0 -84019073,19073,1.0 -84019075,19075,1.0 -84019077,19077,1.0 -84019079,19079,1.0 -84019081,19081,1.0 -84019083,19083,1.0 -84019085,19085,1.0 -84019087,19087,1.0 -84019089,19089,1.0 -84019091,19091,1.0 -84019093,19093,1.0 -84019095,19095,1.0 -84019097,19097,1.0 -84019099,19099,1.0 -84019101,19101,1.0 -84019103,19103,1.0 -84019105,19105,1.0 -84019107,19107,1.0 -84019109,19109,1.0 -84019111,19111,1.0 -84019113,19113,1.0 -84019115,19115,1.0 -84019117,19117,1.0 -84019119,19119,1.0 -84019121,19121,1.0 -84019123,19123,1.0 -84019125,19125,1.0 -84019127,19127,1.0 -84019129,19129,1.0 -84019131,19131,1.0 -84019133,19133,1.0 -84019135,19135,1.0 -84019137,19137,1.0 -84019139,19139,1.0 -84019141,19141,1.0 -84019143,19143,1.0 -84019145,19145,1.0 -84019147,19147,1.0 -84019149,19149,1.0 -84019151,19151,1.0 -84019153,19153,1.0 -84019155,19155,1.0 -84019157,19157,1.0 -84019159,19159,1.0 -84019161,19161,1.0 -84019163,19163,1.0 -84019165,19165,1.0 -84019167,19167,1.0 -84019169,19169,1.0 -84019171,19171,1.0 -84019173,19173,1.0 -84019175,19175,1.0 -84019177,19177,1.0 -84019179,19179,1.0 -84019181,19181,1.0 -84019183,19183,1.0 -84019185,19185,1.0 -84019187,19187,1.0 -84019189,19189,1.0 -84019191,19191,1.0 -84019193,19193,1.0 -84019195,19195,1.0 -84019197,19197,1.0 -84020001,20001,1.0 -84020003,20003,1.0 -84020005,20005,1.0 -84020007,20007,1.0 -84020009,20009,1.0 -84020011,20011,1.0 -84020013,20013,1.0 -84020015,20015,1.0 -84020017,20017,1.0 -84020019,20019,1.0 -84020021,20021,1.0 -84020023,20023,1.0 -84020025,20025,1.0 -84020027,20027,1.0 -84020029,20029,1.0 -84020031,20031,1.0 -84020033,20033,1.0 -84020035,20035,1.0 -84020037,20037,1.0 -84020039,20039,1.0 -84020041,20041,1.0 -84020043,20043,1.0 -84020045,20045,1.0 -84020047,20047,1.0 -84020049,20049,1.0 -84020051,20051,1.0 -84020053,20053,1.0 -84020055,20055,1.0 -84020057,20057,1.0 -84020059,20059,1.0 -84020061,20061,1.0 -84020063,20063,1.0 -84020065,20065,1.0 -84020067,20067,1.0 -84020069,20069,1.0 -84020071,20071,1.0 -84020073,20073,1.0 -84020075,20075,1.0 -84020077,20077,1.0 -84020079,20079,1.0 -84020081,20081,1.0 -84020083,20083,1.0 -84020085,20085,1.0 -84020087,20087,1.0 -84020089,20089,1.0 -84020091,20091,1.0 -84020093,20093,1.0 -84020095,20095,1.0 -84020097,20097,1.0 -84020099,20099,1.0 -84020101,20101,1.0 -84020103,20103,1.0 -84020105,20105,1.0 -84020107,20107,1.0 -84020109,20109,1.0 -84020111,20111,1.0 -84020113,20113,1.0 -84020115,20115,1.0 -84020117,20117,1.0 -84020119,20119,1.0 -84020121,20121,1.0 -84020123,20123,1.0 -84020125,20125,1.0 -84020127,20127,1.0 -84020129,20129,1.0 -84020131,20131,1.0 -84020133,20133,1.0 -84020135,20135,1.0 -84020137,20137,1.0 -84020139,20139,1.0 -84020141,20141,1.0 -84020143,20143,1.0 -84020145,20145,1.0 -84020147,20147,1.0 -84020149,20149,1.0 -84020151,20151,1.0 -84020153,20153,1.0 -84020155,20155,1.0 -84020157,20157,1.0 -84020159,20159,1.0 -84020161,20161,1.0 -84020163,20163,1.0 -84020165,20165,1.0 -84020167,20167,1.0 -84020169,20169,1.0 -84020171,20171,1.0 -84020173,20173,1.0 -84020175,20175,1.0 -84020177,20177,1.0 -84020179,20179,1.0 -84020181,20181,1.0 -84020183,20183,1.0 -84020185,20185,1.0 -84020187,20187,1.0 -84020189,20189,1.0 -84020191,20191,1.0 -84020193,20193,1.0 -84020195,20195,1.0 -84020197,20197,1.0 -84020199,20199,1.0 -84020201,20201,1.0 -84020203,20203,1.0 -84020205,20205,1.0 -84020207,20207,1.0 -84020209,20209,1.0 -84021001,21001,1.0 -84021003,21003,1.0 -84021005,21005,1.0 -84021007,21007,1.0 -84021009,21009,1.0 -84021011,21011,1.0 -84021013,21013,1.0 -84021015,21015,1.0 -84021017,21017,1.0 -84021019,21019,1.0 -84021021,21021,1.0 -84021023,21023,1.0 -84021025,21025,1.0 -84021027,21027,1.0 -84021029,21029,1.0 -84021031,21031,1.0 -84021033,21033,1.0 -84021035,21035,1.0 -84021037,21037,1.0 -84021039,21039,1.0 -84021041,21041,1.0 -84021043,21043,1.0 -84021045,21045,1.0 -84021047,21047,1.0 -84021049,21049,1.0 -84021051,21051,1.0 -84021053,21053,1.0 -84021055,21055,1.0 -84021057,21057,1.0 -84021059,21059,1.0 -84021061,21061,1.0 -84021063,21063,1.0 -84021065,21065,1.0 -84021067,21067,1.0 -84021069,21069,1.0 -84021071,21071,1.0 -84021073,21073,1.0 -84021075,21075,1.0 -84021077,21077,1.0 -84021079,21079,1.0 -84021081,21081,1.0 -84021083,21083,1.0 -84021085,21085,1.0 -84021087,21087,1.0 -84021089,21089,1.0 -84021091,21091,1.0 -84021093,21093,1.0 -84021095,21095,1.0 -84021097,21097,1.0 -84021099,21099,1.0 -84021101,21101,1.0 -84021103,21103,1.0 -84021105,21105,1.0 -84021107,21107,1.0 -84021109,21109,1.0 -84021111,21111,1.0 -84021113,21113,1.0 -84021115,21115,1.0 -84021117,21117,1.0 -84021119,21119,1.0 -84021121,21121,1.0 -84021123,21123,1.0 -84021125,21125,1.0 -84021127,21127,1.0 -84021129,21129,1.0 -84021131,21131,1.0 -84021133,21133,1.0 -84021135,21135,1.0 -84021137,21137,1.0 -84021139,21139,1.0 -84021141,21141,1.0 -84021143,21143,1.0 -84021145,21145,1.0 -84021147,21147,1.0 -84021149,21149,1.0 -84021151,21151,1.0 -84021153,21153,1.0 -84021155,21155,1.0 -84021157,21157,1.0 -84021159,21159,1.0 -84021161,21161,1.0 -84021163,21163,1.0 -84021165,21165,1.0 -84021167,21167,1.0 -84021169,21169,1.0 -84021171,21171,1.0 -84021173,21173,1.0 -84021175,21175,1.0 -84021177,21177,1.0 -84021179,21179,1.0 -84021181,21181,1.0 -84021183,21183,1.0 -84021185,21185,1.0 -84021187,21187,1.0 -84021189,21189,1.0 -84021191,21191,1.0 -84021193,21193,1.0 -84021195,21195,1.0 -84021197,21197,1.0 -84021199,21199,1.0 -84021201,21201,1.0 -84021203,21203,1.0 -84021205,21205,1.0 -84021207,21207,1.0 -84021209,21209,1.0 -84021211,21211,1.0 -84021213,21213,1.0 -84021215,21215,1.0 -84021217,21217,1.0 -84021219,21219,1.0 -84021221,21221,1.0 -84021223,21223,1.0 -84021225,21225,1.0 -84021227,21227,1.0 -84021229,21229,1.0 -84021231,21231,1.0 -84021233,21233,1.0 -84021235,21235,1.0 -84021237,21237,1.0 -84021239,21239,1.0 -84022001,22001,1.0 -84022003,22003,1.0 -84022005,22005,1.0 -84022007,22007,1.0 -84022009,22009,1.0 -84022011,22011,1.0 -84022013,22013,1.0 -84022015,22015,1.0 -84022017,22017,1.0 -84022019,22019,1.0 -84022021,22021,1.0 -84022023,22023,1.0 -84022025,22025,1.0 -84022027,22027,1.0 -84022029,22029,1.0 -84022031,22031,1.0 -84022033,22033,1.0 -84022035,22035,1.0 -84022037,22037,1.0 -84022039,22039,1.0 -84022041,22041,1.0 -84022043,22043,1.0 -84022045,22045,1.0 -84022047,22047,1.0 -84022049,22049,1.0 -84022051,22051,1.0 -84022053,22053,1.0 -84022055,22055,1.0 -84022057,22057,1.0 -84022059,22059,1.0 -84022061,22061,1.0 -84022063,22063,1.0 -84022065,22065,1.0 -84022067,22067,1.0 -84022069,22069,1.0 -84022071,22071,1.0 -84022073,22073,1.0 -84022075,22075,1.0 -84022077,22077,1.0 -84022079,22079,1.0 -84022081,22081,1.0 -84022083,22083,1.0 -84022085,22085,1.0 -84022087,22087,1.0 -84022089,22089,1.0 -84022091,22091,1.0 -84022093,22093,1.0 -84022095,22095,1.0 -84022097,22097,1.0 -84022099,22099,1.0 -84022101,22101,1.0 -84022103,22103,1.0 -84022105,22105,1.0 -84022107,22107,1.0 -84022109,22109,1.0 -84022111,22111,1.0 -84022113,22113,1.0 -84022115,22115,1.0 -84022117,22117,1.0 -84022119,22119,1.0 -84022121,22121,1.0 -84022123,22123,1.0 -84022125,22125,1.0 -84022127,22127,1.0 -84023001,23001,1.0 -84023003,23003,1.0 -84023005,23005,1.0 -84023007,23007,1.0 -84023009,23009,1.0 -84023011,23011,1.0 -84023013,23013,1.0 -84023015,23015,1.0 -84023017,23017,1.0 -84023019,23019,1.0 -84023021,23021,1.0 -84023023,23023,1.0 -84023025,23025,1.0 -84023027,23027,1.0 -84023029,23029,1.0 -84023031,23031,1.0 -84024001,24001,1.0 -84024003,24003,1.0 -84024005,24005,1.0 -84024009,24009,1.0 -84024011,24011,1.0 -84024013,24013,1.0 -84024015,24015,1.0 -84024017,24017,1.0 -84024019,24019,1.0 -84024021,24021,1.0 -84024023,24023,1.0 -84024025,24025,1.0 -84024027,24027,1.0 -84024029,24029,1.0 -84024031,24031,1.0 -84024033,24033,1.0 -84024035,24035,1.0 -84024037,24037,1.0 -84024039,24039,1.0 -84024041,24041,1.0 -84024043,24043,1.0 -84024045,24045,1.0 -84024047,24047,1.0 -84024510,24510,1.0 -84025001,25001,1.0 -84025003,25003,1.0 -84025005,25005,1.0 -84025007,25007,1.0 -84025009,25009,1.0 -84025011,25011,1.0 -84025013,25013,1.0 -84025015,25015,1.0 -84025017,25017,1.0 -84025019,25019,1.0 -84025021,25021,1.0 -84025023,25023,1.0 -84025025,25025,1.0 -84025027,25027,1.0 -84026001,26001,1.0 -84026003,26003,1.0 -84026005,26005,1.0 -84026007,26007,1.0 -84026009,26009,1.0 -84026011,26011,1.0 -84026013,26013,1.0 -84026015,26015,1.0 -84026017,26017,1.0 -84026019,26019,1.0 -84026021,26021,1.0 -84026023,26023,1.0 -84026025,26025,1.0 -84026027,26027,1.0 -84026029,26029,1.0 -84026031,26031,1.0 -84026033,26033,1.0 -84026035,26035,1.0 -84026037,26037,1.0 -84026039,26039,1.0 -84026041,26041,1.0 -84026043,26043,1.0 -84026045,26045,1.0 -84026047,26047,1.0 -84026049,26049,1.0 -84026051,26051,1.0 -84026053,26053,1.0 -84026055,26055,1.0 -84026057,26057,1.0 -84026059,26059,1.0 -84026061,26061,1.0 -84026063,26063,1.0 -84026065,26065,1.0 -84026067,26067,1.0 -84026069,26069,1.0 -84026071,26071,1.0 -84026073,26073,1.0 -84026075,26075,1.0 -84026077,26077,1.0 -84026079,26079,1.0 -84026081,26081,1.0 -84026083,26083,1.0 -84026085,26085,1.0 -84026087,26087,1.0 -84026089,26089,1.0 -84026091,26091,1.0 -84026093,26093,1.0 -84026095,26095,1.0 -84026097,26097,1.0 -84026099,26099,1.0 -84026101,26101,1.0 -84026103,26103,1.0 -84026105,26105,1.0 -84026107,26107,1.0 -84026109,26109,1.0 -84026111,26111,1.0 -84026113,26113,1.0 -84026115,26115,1.0 -84026117,26117,1.0 -84026119,26119,1.0 -84026121,26121,1.0 -84026123,26123,1.0 -84026125,26125,1.0 -84026127,26127,1.0 -84026129,26129,1.0 -84026131,26131,1.0 -84026133,26133,1.0 -84026135,26135,1.0 -84026137,26137,1.0 -84026139,26139,1.0 -84026141,26141,1.0 -84026143,26143,1.0 -84026145,26145,1.0 -84026147,26147,1.0 -84026149,26149,1.0 -84026151,26151,1.0 -84026153,26153,1.0 -84026155,26155,1.0 -84026157,26157,1.0 -84026159,26159,1.0 -84026161,26161,1.0 -84026163,26163,1.0 -84026165,26165,1.0 -84027001,27001,1.0 -84027003,27003,1.0 -84027005,27005,1.0 -84027007,27007,1.0 -84027009,27009,1.0 -84027011,27011,1.0 -84027013,27013,1.0 -84027015,27015,1.0 -84027017,27017,1.0 -84027019,27019,1.0 -84027021,27021,1.0 -84027023,27023,1.0 -84027025,27025,1.0 -84027027,27027,1.0 -84027029,27029,1.0 -84027031,27031,1.0 -84027033,27033,1.0 -84027035,27035,1.0 -84027037,27037,1.0 -84027039,27039,1.0 -84027041,27041,1.0 -84027043,27043,1.0 -84027045,27045,1.0 -84027047,27047,1.0 -84027049,27049,1.0 -84027051,27051,1.0 -84027053,27053,1.0 -84027055,27055,1.0 -84027057,27057,1.0 -84027059,27059,1.0 -84027061,27061,1.0 -84027063,27063,1.0 -84027065,27065,1.0 -84027067,27067,1.0 -84027069,27069,1.0 -84027071,27071,1.0 -84027073,27073,1.0 -84027075,27075,1.0 -84027077,27077,1.0 -84027079,27079,1.0 -84027081,27081,1.0 -84027083,27083,1.0 -84027085,27085,1.0 -84027087,27087,1.0 -84027089,27089,1.0 -84027091,27091,1.0 -84027093,27093,1.0 -84027095,27095,1.0 -84027097,27097,1.0 -84027099,27099,1.0 -84027101,27101,1.0 -84027103,27103,1.0 -84027105,27105,1.0 -84027107,27107,1.0 -84027109,27109,1.0 -84027111,27111,1.0 -84027113,27113,1.0 -84027115,27115,1.0 -84027117,27117,1.0 -84027119,27119,1.0 -84027121,27121,1.0 -84027123,27123,1.0 -84027125,27125,1.0 -84027127,27127,1.0 -84027129,27129,1.0 -84027131,27131,1.0 -84027133,27133,1.0 -84027135,27135,1.0 -84027137,27137,1.0 -84027139,27139,1.0 -84027141,27141,1.0 -84027143,27143,1.0 -84027145,27145,1.0 -84027147,27147,1.0 -84027149,27149,1.0 -84027151,27151,1.0 -84027153,27153,1.0 -84027155,27155,1.0 -84027157,27157,1.0 -84027159,27159,1.0 -84027161,27161,1.0 -84027163,27163,1.0 -84027165,27165,1.0 -84027167,27167,1.0 -84027169,27169,1.0 -84027171,27171,1.0 -84027173,27173,1.0 -84028001,28001,1.0 -84028003,28003,1.0 -84028005,28005,1.0 -84028007,28007,1.0 -84028009,28009,1.0 -84028011,28011,1.0 -84028013,28013,1.0 -84028015,28015,1.0 -84028017,28017,1.0 -84028019,28019,1.0 -84028021,28021,1.0 -84028023,28023,1.0 -84028025,28025,1.0 -84028027,28027,1.0 -84028029,28029,1.0 -84028031,28031,1.0 -84028033,28033,1.0 -84028035,28035,1.0 -84028037,28037,1.0 -84028039,28039,1.0 -84028041,28041,1.0 -84028043,28043,1.0 -84028045,28045,1.0 -84028047,28047,1.0 -84028049,28049,1.0 -84028051,28051,1.0 -84028053,28053,1.0 -84028055,28055,1.0 -84028057,28057,1.0 -84028059,28059,1.0 -84028061,28061,1.0 -84028063,28063,1.0 -84028065,28065,1.0 -84028067,28067,1.0 -84028069,28069,1.0 -84028071,28071,1.0 -84028073,28073,1.0 -84028075,28075,1.0 -84028077,28077,1.0 -84028079,28079,1.0 -84028081,28081,1.0 -84028083,28083,1.0 -84028085,28085,1.0 -84028087,28087,1.0 -84028089,28089,1.0 -84028091,28091,1.0 -84028093,28093,1.0 -84028095,28095,1.0 -84028097,28097,1.0 -84028099,28099,1.0 -84028101,28101,1.0 -84028103,28103,1.0 -84028105,28105,1.0 -84028107,28107,1.0 -84028109,28109,1.0 -84028111,28111,1.0 -84028113,28113,1.0 -84028115,28115,1.0 -84028117,28117,1.0 -84028119,28119,1.0 -84028121,28121,1.0 -84028123,28123,1.0 -84028125,28125,1.0 -84028127,28127,1.0 -84028129,28129,1.0 -84028131,28131,1.0 -84028133,28133,1.0 -84028135,28135,1.0 -84028137,28137,1.0 -84028139,28139,1.0 -84028141,28141,1.0 -84028143,28143,1.0 -84028145,28145,1.0 -84028147,28147,1.0 -84028149,28149,1.0 -84028151,28151,1.0 -84028153,28153,1.0 -84028155,28155,1.0 -84028157,28157,1.0 -84028159,28159,1.0 -84028161,28161,1.0 -84028163,28163,1.0 -84029001,29001,1.0 -84029003,29003,1.0 -84029005,29005,1.0 -84029007,29007,1.0 -84029009,29009,1.0 -84029011,29011,1.0 -84029013,29013,1.0 -84029015,29015,1.0 -84029017,29017,1.0 -84029019,29019,1.0 -84029021,29021,1.0 -84029023,29023,1.0 -84029025,29025,1.0 -84029027,29027,1.0 -84029029,29029,1.0 -84029031,29031,1.0 -84029033,29033,1.0 -84029035,29035,1.0 -84029037,29037,1.0 -84029039,29039,1.0 -84029041,29041,1.0 -84029043,29043,1.0 -84029045,29045,1.0 -84029047,29047,1.0 -84029049,29049,1.0 -84029051,29051,1.0 -84029053,29053,1.0 -84029055,29055,1.0 -84029057,29057,1.0 -84029059,29059,1.0 -84029061,29061,1.0 -84029063,29063,1.0 -84029065,29065,1.0 -84029067,29067,1.0 -84029069,29069,1.0 -84029071,29071,1.0 -84029073,29073,1.0 -84029075,29075,1.0 -84029077,29077,1.0 -84029079,29079,1.0 -84029081,29081,1.0 -84029083,29083,1.0 -84029085,29085,1.0 -84029087,29087,1.0 -84029089,29089,1.0 -84029091,29091,1.0 -84029093,29093,1.0 -84029095,29095,1.0 -84029097,29097,1.0 -84029099,29099,1.0 -84029101,29101,1.0 -84029103,29103,1.0 -84029105,29105,1.0 -84029107,29107,1.0 -84029109,29109,1.0 -84029111,29111,1.0 -84029113,29113,1.0 -84029115,29115,1.0 -84029117,29117,1.0 -84029119,29119,1.0 -84029121,29121,1.0 -84029123,29123,1.0 -84029125,29125,1.0 -84029127,29127,1.0 -84029129,29129,1.0 -84029131,29131,1.0 -84029133,29133,1.0 -84029135,29135,1.0 -84029137,29137,1.0 -84029139,29139,1.0 -84029141,29141,1.0 -84029143,29143,1.0 -84029145,29145,1.0 -84029147,29147,1.0 -84029149,29149,1.0 -84029151,29151,1.0 -84029153,29153,1.0 -84029155,29155,1.0 -84029157,29157,1.0 -84029159,29159,1.0 -84029161,29161,1.0 -84029163,29163,1.0 -84029165,29165,1.0 -84029167,29167,1.0 -84029169,29169,1.0 -84029171,29171,1.0 -84029173,29173,1.0 -84029175,29175,1.0 -84029177,29177,1.0 -84029179,29179,1.0 -84029181,29181,1.0 -84029183,29183,1.0 -84029185,29185,1.0 -84029186,29186,1.0 -84029187,29187,1.0 -84029189,29189,1.0 -84029195,29195,1.0 -84029197,29197,1.0 -84029199,29199,1.0 -84029201,29201,1.0 -84029203,29203,1.0 -84029205,29205,1.0 -84029207,29207,1.0 -84029209,29209,1.0 -84029211,29211,1.0 -84029213,29213,1.0 -84029215,29215,1.0 -84029217,29217,1.0 -84029219,29219,1.0 -84029221,29221,1.0 -84029223,29223,1.0 -84029225,29225,1.0 -84029227,29227,1.0 -84029229,29229,1.0 -84029510,29510,1.0 -84030001,30001,1.0 -84030003,30003,1.0 -84030005,30005,1.0 -84030007,30007,1.0 -84030009,30009,1.0 -84030011,30011,1.0 -84030013,30013,1.0 -84030015,30015,1.0 -84030017,30017,1.0 -84030019,30019,1.0 -84030021,30021,1.0 -84030023,30023,1.0 -84030025,30025,1.0 -84030027,30027,1.0 -84030029,30029,1.0 -84030031,30031,1.0 -84030033,30033,1.0 -84030035,30035,1.0 -84030037,30037,1.0 -84030039,30039,1.0 -84030041,30041,1.0 -84030043,30043,1.0 -84030045,30045,1.0 -84030047,30047,1.0 -84030049,30049,1.0 -84030051,30051,1.0 -84030053,30053,1.0 -84030055,30055,1.0 -84030057,30057,1.0 -84030059,30059,1.0 -84030061,30061,1.0 -84030063,30063,1.0 -84030065,30065,1.0 -84030067,30067,1.0 -84030069,30069,1.0 -84030071,30071,1.0 -84030073,30073,1.0 -84030075,30075,1.0 -84030077,30077,1.0 -84030079,30079,1.0 -84030081,30081,1.0 -84030083,30083,1.0 -84030085,30085,1.0 -84030087,30087,1.0 -84030089,30089,1.0 -84030091,30091,1.0 -84030093,30093,1.0 -84030095,30095,1.0 -84030097,30097,1.0 -84030099,30099,1.0 -84030101,30101,1.0 -84030103,30103,1.0 -84030105,30105,1.0 -84030107,30107,1.0 -84030109,30109,1.0 -84030111,30111,1.0 -84031001,31001,1.0 -84031003,31003,1.0 -84031005,31005,1.0 -84031007,31007,1.0 -84031009,31009,1.0 -84031011,31011,1.0 -84031013,31013,1.0 -84031015,31015,1.0 -84031017,31017,1.0 -84031019,31019,1.0 -84031021,31021,1.0 -84031023,31023,1.0 -84031025,31025,1.0 -84031027,31027,1.0 -84031029,31029,1.0 -84031031,31031,1.0 -84031033,31033,1.0 -84031035,31035,1.0 -84031037,31037,1.0 -84031039,31039,1.0 -84031041,31041,1.0 -84031043,31043,1.0 -84031045,31045,1.0 -84031047,31047,1.0 -84031049,31049,1.0 -84031051,31051,1.0 -84031053,31053,1.0 -84031055,31055,1.0 -84031057,31057,1.0 -84031059,31059,1.0 -84031061,31061,1.0 -84031063,31063,1.0 -84031065,31065,1.0 -84031067,31067,1.0 -84031069,31069,1.0 -84031071,31071,1.0 -84031073,31073,1.0 -84031075,31075,1.0 -84031077,31077,1.0 -84031079,31079,1.0 -84031081,31081,1.0 -84031083,31083,1.0 -84031085,31085,1.0 -84031087,31087,1.0 -84031089,31089,1.0 -84031091,31091,1.0 -84031093,31093,1.0 -84031095,31095,1.0 -84031097,31097,1.0 -84031099,31099,1.0 -84031101,31101,1.0 -84031103,31103,1.0 -84031105,31105,1.0 -84031107,31107,1.0 -84031109,31109,1.0 -84031111,31111,1.0 -84031113,31113,1.0 -84031115,31115,1.0 -84031117,31117,1.0 -84031119,31119,1.0 -84031121,31121,1.0 -84031123,31123,1.0 -84031125,31125,1.0 -84031127,31127,1.0 -84031129,31129,1.0 -84031131,31131,1.0 -84031133,31133,1.0 -84031135,31135,1.0 -84031137,31137,1.0 -84031139,31139,1.0 -84031141,31141,1.0 -84031143,31143,1.0 -84031145,31145,1.0 -84031147,31147,1.0 -84031149,31149,1.0 -84031151,31151,1.0 -84031153,31153,1.0 -84031155,31155,1.0 -84031157,31157,1.0 -84031159,31159,1.0 -84031161,31161,1.0 -84031163,31163,1.0 -84031165,31165,1.0 -84031167,31167,1.0 -84031169,31169,1.0 -84031171,31171,1.0 -84031173,31173,1.0 -84031175,31175,1.0 -84031177,31177,1.0 -84031179,31179,1.0 -84031181,31181,1.0 -84031183,31183,1.0 -84031185,31185,1.0 -84032001,32001,1.0 -84032003,32003,1.0 -84032005,32005,1.0 -84032007,32007,1.0 -84032009,32009,1.0 -84032011,32011,1.0 -84032013,32013,1.0 -84032015,32015,1.0 -84032017,32017,1.0 -84032019,32019,1.0 -84032021,32021,1.0 -84032023,32023,1.0 -84032027,32027,1.0 -84032029,32029,1.0 -84032031,32031,1.0 -84032033,32033,1.0 -84032510,32510,1.0 -84033001,33001,1.0 -84033003,33003,1.0 -84033005,33005,1.0 -84033007,33007,1.0 -84033009,33009,1.0 -84033011,33011,1.0 -84033013,33013,1.0 -84033015,33015,1.0 -84033017,33017,1.0 -84033019,33019,1.0 -84034001,34001,1.0 -84034003,34003,1.0 -84034005,34005,1.0 -84034007,34007,1.0 -84034009,34009,1.0 -84034011,34011,1.0 -84034013,34013,1.0 -84034015,34015,1.0 -84034017,34017,1.0 -84034019,34019,1.0 -84034021,34021,1.0 -84034023,34023,1.0 -84034025,34025,1.0 -84034027,34027,1.0 -84034029,34029,1.0 -84034031,34031,1.0 -84034033,34033,1.0 -84034035,34035,1.0 -84034037,34037,1.0 -84034039,34039,1.0 -84034041,34041,1.0 -84035001,35001,1.0 -84035003,35003,1.0 -84035005,35005,1.0 -84035006,35006,1.0 -84035007,35007,1.0 -84035009,35009,1.0 -84035011,35011,1.0 -84035013,35013,1.0 -84035015,35015,1.0 -84035017,35017,1.0 -84035019,35019,1.0 -84035021,35021,1.0 -84035023,35023,1.0 -84035025,35025,1.0 -84035027,35027,1.0 -84035028,35028,1.0 -84035029,35029,1.0 -84035031,35031,1.0 -84035033,35033,1.0 -84035035,35035,1.0 -84035037,35037,1.0 -84035039,35039,1.0 -84035041,35041,1.0 -84035043,35043,1.0 -84035045,35045,1.0 -84035047,35047,1.0 -84035049,35049,1.0 -84035051,35051,1.0 -84035053,35053,1.0 -84035055,35055,1.0 -84035057,35057,1.0 -84035059,35059,1.0 -84035061,35061,1.0 -84036001,36001,1.0 -84036003,36003,1.0 -84036005,36005,1.0 -84036007,36007,1.0 -84036009,36009,1.0 -84036011,36011,1.0 -84036013,36013,1.0 -84036015,36015,1.0 -84036017,36017,1.0 -84036019,36019,1.0 -84036021,36021,1.0 -84036023,36023,1.0 -84036025,36025,1.0 -84036027,36027,1.0 -84036029,36029,1.0 -84036031,36031,1.0 -84036033,36033,1.0 -84036035,36035,1.0 -84036037,36037,1.0 -84036039,36039,1.0 -84036041,36041,1.0 -84036043,36043,1.0 -84036045,36045,1.0 -84036047,36047,1.0 -84036049,36049,1.0 -84036051,36051,1.0 -84036053,36053,1.0 -84036055,36055,1.0 -84036057,36057,1.0 -84036059,36059,1.0 -84036061,36061,1.0 -84036063,36063,1.0 -84036065,36065,1.0 -84036067,36067,1.0 -84036069,36069,1.0 -84036071,36071,1.0 -84036073,36073,1.0 -84036075,36075,1.0 -84036077,36077,1.0 -84036079,36079,1.0 -84036081,36081,1.0 -84036083,36083,1.0 -84036085,36085,1.0 -84036087,36087,1.0 -84036089,36089,1.0 -84036091,36091,1.0 -84036093,36093,1.0 -84036095,36095,1.0 -84036097,36097,1.0 -84036099,36099,1.0 -84036101,36101,1.0 -84036103,36103,1.0 -84036105,36105,1.0 -84036107,36107,1.0 -84036109,36109,1.0 -84036111,36111,1.0 -84036113,36113,1.0 -84036115,36115,1.0 -84036117,36117,1.0 -84036119,36119,1.0 -84036121,36121,1.0 -84036123,36123,1.0 -84037001,37001,1.0 -84037003,37003,1.0 -84037005,37005,1.0 -84037007,37007,1.0 -84037009,37009,1.0 -84037011,37011,1.0 -84037013,37013,1.0 -84037015,37015,1.0 -84037017,37017,1.0 -84037019,37019,1.0 -84037021,37021,1.0 -84037023,37023,1.0 -84037025,37025,1.0 -84037027,37027,1.0 -84037029,37029,1.0 -84037031,37031,1.0 -84037033,37033,1.0 -84037035,37035,1.0 -84037037,37037,1.0 -84037039,37039,1.0 -84037041,37041,1.0 -84037043,37043,1.0 -84037045,37045,1.0 -84037047,37047,1.0 -84037049,37049,1.0 -84037051,37051,1.0 -84037053,37053,1.0 -84037055,37055,1.0 -84037057,37057,1.0 -84037059,37059,1.0 -84037061,37061,1.0 -84037063,37063,1.0 -84037065,37065,1.0 -84037067,37067,1.0 -84037069,37069,1.0 -84037071,37071,1.0 -84037073,37073,1.0 -84037075,37075,1.0 -84037077,37077,1.0 -84037079,37079,1.0 -84037081,37081,1.0 -84037083,37083,1.0 -84037085,37085,1.0 -84037087,37087,1.0 -84037089,37089,1.0 -84037091,37091,1.0 -84037093,37093,1.0 -84037095,37095,1.0 -84037097,37097,1.0 -84037099,37099,1.0 -84037101,37101,1.0 -84037103,37103,1.0 -84037105,37105,1.0 -84037107,37107,1.0 -84037109,37109,1.0 -84037111,37111,1.0 -84037113,37113,1.0 -84037115,37115,1.0 -84037117,37117,1.0 -84037119,37119,1.0 -84037121,37121,1.0 -84037123,37123,1.0 -84037125,37125,1.0 -84037127,37127,1.0 -84037129,37129,1.0 -84037131,37131,1.0 -84037133,37133,1.0 -84037135,37135,1.0 -84037137,37137,1.0 -84037139,37139,1.0 -84037141,37141,1.0 -84037143,37143,1.0 -84037145,37145,1.0 -84037147,37147,1.0 -84037149,37149,1.0 -84037151,37151,1.0 -84037153,37153,1.0 -84037155,37155,1.0 -84037157,37157,1.0 -84037159,37159,1.0 -84037161,37161,1.0 -84037163,37163,1.0 -84037165,37165,1.0 -84037167,37167,1.0 -84037169,37169,1.0 -84037171,37171,1.0 -84037173,37173,1.0 -84037175,37175,1.0 -84037177,37177,1.0 -84037179,37179,1.0 -84037181,37181,1.0 -84037183,37183,1.0 -84037185,37185,1.0 -84037187,37187,1.0 -84037189,37189,1.0 -84037191,37191,1.0 -84037193,37193,1.0 -84037195,37195,1.0 -84037197,37197,1.0 -84037199,37199,1.0 -84038001,38001,1.0 -84038003,38003,1.0 -84038005,38005,1.0 -84038007,38007,1.0 -84038009,38009,1.0 -84038011,38011,1.0 -84038013,38013,1.0 -84038015,38015,1.0 -84038017,38017,1.0 -84038019,38019,1.0 -84038021,38021,1.0 -84038023,38023,1.0 -84038025,38025,1.0 -84038027,38027,1.0 -84038029,38029,1.0 -84038031,38031,1.0 -84038033,38033,1.0 -84038035,38035,1.0 -84038037,38037,1.0 -84038039,38039,1.0 -84038041,38041,1.0 -84038043,38043,1.0 -84038045,38045,1.0 -84038047,38047,1.0 -84038049,38049,1.0 -84038051,38051,1.0 -84038053,38053,1.0 -84038055,38055,1.0 -84038057,38057,1.0 -84038059,38059,1.0 -84038061,38061,1.0 -84038063,38063,1.0 -84038065,38065,1.0 -84038067,38067,1.0 -84038069,38069,1.0 -84038071,38071,1.0 -84038073,38073,1.0 -84038075,38075,1.0 -84038077,38077,1.0 -84038079,38079,1.0 -84038081,38081,1.0 -84038083,38083,1.0 -84038085,38085,1.0 -84038087,38087,1.0 -84038089,38089,1.0 -84038091,38091,1.0 -84038093,38093,1.0 -84038095,38095,1.0 -84038097,38097,1.0 -84038099,38099,1.0 -84038101,38101,1.0 -84038103,38103,1.0 -84038105,38105,1.0 -84039001,39001,1.0 -84039003,39003,1.0 -84039005,39005,1.0 -84039007,39007,1.0 -84039009,39009,1.0 -84039011,39011,1.0 -84039013,39013,1.0 -84039015,39015,1.0 -84039017,39017,1.0 -84039019,39019,1.0 -84039021,39021,1.0 -84039023,39023,1.0 -84039025,39025,1.0 -84039027,39027,1.0 -84039029,39029,1.0 -84039031,39031,1.0 -84039033,39033,1.0 -84039035,39035,1.0 -84039037,39037,1.0 -84039039,39039,1.0 -84039041,39041,1.0 -84039043,39043,1.0 -84039045,39045,1.0 -84039047,39047,1.0 -84039049,39049,1.0 -84039051,39051,1.0 -84039053,39053,1.0 -84039055,39055,1.0 -84039057,39057,1.0 -84039059,39059,1.0 -84039061,39061,1.0 -84039063,39063,1.0 -84039065,39065,1.0 -84039067,39067,1.0 -84039069,39069,1.0 -84039071,39071,1.0 -84039073,39073,1.0 -84039075,39075,1.0 -84039077,39077,1.0 -84039079,39079,1.0 -84039081,39081,1.0 -84039083,39083,1.0 -84039085,39085,1.0 -84039087,39087,1.0 -84039089,39089,1.0 -84039091,39091,1.0 -84039093,39093,1.0 -84039095,39095,1.0 -84039097,39097,1.0 -84039099,39099,1.0 -84039101,39101,1.0 -84039103,39103,1.0 -84039105,39105,1.0 -84039107,39107,1.0 -84039109,39109,1.0 -84039111,39111,1.0 -84039113,39113,1.0 -84039115,39115,1.0 -84039117,39117,1.0 -84039119,39119,1.0 -84039121,39121,1.0 -84039123,39123,1.0 -84039125,39125,1.0 -84039127,39127,1.0 -84039129,39129,1.0 -84039131,39131,1.0 -84039133,39133,1.0 -84039135,39135,1.0 -84039137,39137,1.0 -84039139,39139,1.0 -84039141,39141,1.0 -84039143,39143,1.0 -84039145,39145,1.0 -84039147,39147,1.0 -84039149,39149,1.0 -84039151,39151,1.0 -84039153,39153,1.0 -84039155,39155,1.0 -84039157,39157,1.0 -84039159,39159,1.0 -84039161,39161,1.0 -84039163,39163,1.0 -84039165,39165,1.0 -84039167,39167,1.0 -84039169,39169,1.0 -84039171,39171,1.0 -84039173,39173,1.0 -84039175,39175,1.0 -84040001,40001,1.0 -84040003,40003,1.0 -84040005,40005,1.0 -84040007,40007,1.0 -84040009,40009,1.0 -84040011,40011,1.0 -84040013,40013,1.0 -84040015,40015,1.0 -84040017,40017,1.0 -84040019,40019,1.0 -84040021,40021,1.0 -84040023,40023,1.0 -84040025,40025,1.0 -84040027,40027,1.0 -84040029,40029,1.0 -84040031,40031,1.0 -84040033,40033,1.0 -84040035,40035,1.0 -84040037,40037,1.0 -84040039,40039,1.0 -84040041,40041,1.0 -84040043,40043,1.0 -84040045,40045,1.0 -84040047,40047,1.0 -84040049,40049,1.0 -84040051,40051,1.0 -84040053,40053,1.0 -84040055,40055,1.0 -84040057,40057,1.0 -84040059,40059,1.0 -84040061,40061,1.0 -84040063,40063,1.0 -84040065,40065,1.0 -84040067,40067,1.0 -84040069,40069,1.0 -84040071,40071,1.0 -84040073,40073,1.0 -84040075,40075,1.0 -84040077,40077,1.0 -84040079,40079,1.0 -84040081,40081,1.0 -84040083,40083,1.0 -84040085,40085,1.0 -84040087,40087,1.0 -84040089,40089,1.0 -84040091,40091,1.0 -84040093,40093,1.0 -84040095,40095,1.0 -84040097,40097,1.0 -84040099,40099,1.0 -84040101,40101,1.0 -84040103,40103,1.0 -84040105,40105,1.0 -84040107,40107,1.0 -84040109,40109,1.0 -84040111,40111,1.0 -84040113,40113,1.0 -84040115,40115,1.0 -84040117,40117,1.0 -84040119,40119,1.0 -84040121,40121,1.0 -84040123,40123,1.0 -84040125,40125,1.0 -84040127,40127,1.0 -84040129,40129,1.0 -84040131,40131,1.0 -84040133,40133,1.0 -84040135,40135,1.0 -84040137,40137,1.0 -84040139,40139,1.0 -84040141,40141,1.0 -84040143,40143,1.0 -84040145,40145,1.0 -84040147,40147,1.0 -84040149,40149,1.0 -84040151,40151,1.0 -84040153,40153,1.0 -84041001,41001,1.0 -84041003,41003,1.0 -84041005,41005,1.0 -84041007,41007,1.0 -84041009,41009,1.0 -84041011,41011,1.0 -84041013,41013,1.0 -84041015,41015,1.0 -84041017,41017,1.0 -84041019,41019,1.0 -84041021,41021,1.0 -84041023,41023,1.0 -84041025,41025,1.0 -84041027,41027,1.0 -84041029,41029,1.0 -84041031,41031,1.0 -84041033,41033,1.0 -84041035,41035,1.0 -84041037,41037,1.0 -84041039,41039,1.0 -84041041,41041,1.0 -84041043,41043,1.0 -84041045,41045,1.0 -84041047,41047,1.0 -84041049,41049,1.0 -84041051,41051,1.0 -84041053,41053,1.0 -84041055,41055,1.0 -84041057,41057,1.0 -84041059,41059,1.0 -84041061,41061,1.0 -84041063,41063,1.0 -84041065,41065,1.0 -84041067,41067,1.0 -84041069,41069,1.0 -84041071,41071,1.0 -84042001,42001,1.0 -84042003,42003,1.0 -84042005,42005,1.0 -84042007,42007,1.0 -84042009,42009,1.0 -84042011,42011,1.0 -84042013,42013,1.0 -84042015,42015,1.0 -84042017,42017,1.0 -84042019,42019,1.0 -84042021,42021,1.0 -84042023,42023,1.0 -84042025,42025,1.0 -84042027,42027,1.0 -84042029,42029,1.0 -84042031,42031,1.0 -84042033,42033,1.0 -84042035,42035,1.0 -84042037,42037,1.0 -84042039,42039,1.0 -84042041,42041,1.0 -84042043,42043,1.0 -84042045,42045,1.0 -84042047,42047,1.0 -84042049,42049,1.0 -84042051,42051,1.0 -84042053,42053,1.0 -84042055,42055,1.0 -84042057,42057,1.0 -84042059,42059,1.0 -84042061,42061,1.0 -84042063,42063,1.0 -84042065,42065,1.0 -84042067,42067,1.0 -84042069,42069,1.0 -84042071,42071,1.0 -84042073,42073,1.0 -84042075,42075,1.0 -84042077,42077,1.0 -84042079,42079,1.0 -84042081,42081,1.0 -84042083,42083,1.0 -84042085,42085,1.0 -84042087,42087,1.0 -84042089,42089,1.0 -84042091,42091,1.0 -84042093,42093,1.0 -84042095,42095,1.0 -84042097,42097,1.0 -84042099,42099,1.0 -84042101,42101,1.0 -84042103,42103,1.0 -84042105,42105,1.0 -84042107,42107,1.0 -84042109,42109,1.0 -84042111,42111,1.0 -84042113,42113,1.0 -84042115,42115,1.0 -84042117,42117,1.0 -84042119,42119,1.0 -84042121,42121,1.0 -84042123,42123,1.0 -84042125,42125,1.0 -84042127,42127,1.0 -84042129,42129,1.0 -84042131,42131,1.0 -84042133,42133,1.0 -84044001,44001,1.0 -84044003,44003,1.0 -84044005,44005,1.0 -84044007,44007,1.0 -84044009,44009,1.0 -84045001,45001,1.0 -84045003,45003,1.0 -84045005,45005,1.0 -84045007,45007,1.0 -84045009,45009,1.0 -84045011,45011,1.0 -84045013,45013,1.0 -84045015,45015,1.0 -84045017,45017,1.0 -84045019,45019,1.0 -84045021,45021,1.0 -84045023,45023,1.0 -84045025,45025,1.0 -84045027,45027,1.0 -84045029,45029,1.0 -84045031,45031,1.0 -84045033,45033,1.0 -84045035,45035,1.0 -84045037,45037,1.0 -84045039,45039,1.0 -84045041,45041,1.0 -84045043,45043,1.0 -84045045,45045,1.0 -84045047,45047,1.0 -84045049,45049,1.0 -84045051,45051,1.0 -84045053,45053,1.0 -84045055,45055,1.0 -84045057,45057,1.0 -84045059,45059,1.0 -84045061,45061,1.0 -84045063,45063,1.0 -84045065,45065,1.0 -84045067,45067,1.0 -84045069,45069,1.0 -84045071,45071,1.0 -84045073,45073,1.0 -84045075,45075,1.0 -84045077,45077,1.0 -84045079,45079,1.0 -84045081,45081,1.0 -84045083,45083,1.0 -84045085,45085,1.0 -84045087,45087,1.0 -84045089,45089,1.0 -84045091,45091,1.0 -84046003,46003,1.0 -84046005,46005,1.0 -84046007,46007,1.0 -84046009,46009,1.0 -84046011,46011,1.0 -84046013,46013,1.0 -84046015,46015,1.0 -84046017,46017,1.0 -84046019,46019,1.0 -84046021,46021,1.0 -84046023,46023,1.0 -84046025,46025,1.0 -84046027,46027,1.0 -84046029,46029,1.0 -84046031,46031,1.0 -84046033,46033,1.0 -84046035,46035,1.0 -84046037,46037,1.0 -84046039,46039,1.0 -84046041,46041,1.0 -84046043,46043,1.0 -84046045,46045,1.0 -84046047,46047,1.0 -84046049,46049,1.0 -84046051,46051,1.0 -84046053,46053,1.0 -84046055,46055,1.0 -84046057,46057,1.0 -84046059,46059,1.0 -84046061,46061,1.0 -84046063,46063,1.0 -84046065,46065,1.0 -84046067,46067,1.0 -84046069,46069,1.0 -84046071,46071,1.0 -84046073,46073,1.0 -84046075,46075,1.0 -84046077,46077,1.0 -84046079,46079,1.0 -84046081,46081,1.0 -84046083,46083,1.0 -84046085,46085,1.0 -84046087,46087,1.0 -84046089,46089,1.0 -84046091,46091,1.0 -84046093,46093,1.0 -84046095,46095,1.0 -84046097,46097,1.0 -84046099,46099,1.0 -84046101,46101,1.0 -84046102,46113,1.0 -84046103,46103,1.0 -84046105,46105,1.0 -84046107,46107,1.0 -84046109,46109,1.0 -84046111,46111,1.0 -84046115,46115,1.0 -84046117,46117,1.0 -84046119,46119,1.0 -84046121,46121,1.0 -84046123,46123,1.0 -84046125,46125,1.0 -84046127,46127,1.0 -84046129,46129,1.0 -84046135,46135,1.0 -84046137,46137,1.0 -84047001,47001,1.0 -84047003,47003,1.0 -84047005,47005,1.0 -84047007,47007,1.0 -84047009,47009,1.0 -84047011,47011,1.0 -84047013,47013,1.0 -84047015,47015,1.0 -84047017,47017,1.0 -84047019,47019,1.0 -84047021,47021,1.0 -84047023,47023,1.0 -84047025,47025,1.0 -84047027,47027,1.0 -84047029,47029,1.0 -84047031,47031,1.0 -84047033,47033,1.0 -84047035,47035,1.0 -84047037,47037,1.0 -84047039,47039,1.0 -84047041,47041,1.0 -84047043,47043,1.0 -84047045,47045,1.0 -84047047,47047,1.0 -84047049,47049,1.0 -84047051,47051,1.0 -84047053,47053,1.0 -84047055,47055,1.0 -84047057,47057,1.0 -84047059,47059,1.0 -84047061,47061,1.0 -84047063,47063,1.0 -84047065,47065,1.0 -84047067,47067,1.0 -84047069,47069,1.0 -84047071,47071,1.0 -84047073,47073,1.0 -84047075,47075,1.0 -84047077,47077,1.0 -84047079,47079,1.0 -84047081,47081,1.0 -84047083,47083,1.0 -84047085,47085,1.0 -84047087,47087,1.0 -84047089,47089,1.0 -84047091,47091,1.0 -84047093,47093,1.0 -84047095,47095,1.0 -84047097,47097,1.0 -84047099,47099,1.0 -84047101,47101,1.0 -84047103,47103,1.0 -84047105,47105,1.0 -84047107,47107,1.0 -84047109,47109,1.0 -84047111,47111,1.0 -84047113,47113,1.0 -84047115,47115,1.0 -84047117,47117,1.0 -84047119,47119,1.0 -84047121,47121,1.0 -84047123,47123,1.0 -84047125,47125,1.0 -84047127,47127,1.0 -84047129,47129,1.0 -84047131,47131,1.0 -84047133,47133,1.0 -84047135,47135,1.0 -84047137,47137,1.0 -84047139,47139,1.0 -84047141,47141,1.0 -84047143,47143,1.0 -84047145,47145,1.0 -84047147,47147,1.0 -84047149,47149,1.0 -84047151,47151,1.0 -84047153,47153,1.0 -84047155,47155,1.0 -84047157,47157,1.0 -84047159,47159,1.0 -84047161,47161,1.0 -84047163,47163,1.0 -84047165,47165,1.0 -84047167,47167,1.0 -84047169,47169,1.0 -84047171,47171,1.0 -84047173,47173,1.0 -84047175,47175,1.0 -84047177,47177,1.0 -84047179,47179,1.0 -84047181,47181,1.0 -84047183,47183,1.0 -84047185,47185,1.0 -84047187,47187,1.0 -84047189,47189,1.0 -84048001,48001,1.0 -84048003,48003,1.0 -84048005,48005,1.0 -84048007,48007,1.0 -84048009,48009,1.0 -84048011,48011,1.0 -84048013,48013,1.0 -84048015,48015,1.0 -84048017,48017,1.0 -84048019,48019,1.0 -84048021,48021,1.0 -84048023,48023,1.0 -84048025,48025,1.0 -84048027,48027,1.0 -84048029,48029,1.0 -84048031,48031,1.0 -84048033,48033,1.0 -84048035,48035,1.0 -84048037,48037,1.0 -84048039,48039,1.0 -84048041,48041,1.0 -84048043,48043,1.0 -84048045,48045,1.0 -84048047,48047,1.0 -84048049,48049,1.0 -84048051,48051,1.0 -84048053,48053,1.0 -84048055,48055,1.0 -84048057,48057,1.0 -84048059,48059,1.0 -84048061,48061,1.0 -84048063,48063,1.0 -84048065,48065,1.0 -84048067,48067,1.0 -84048069,48069,1.0 -84048071,48071,1.0 -84048073,48073,1.0 -84048075,48075,1.0 -84048077,48077,1.0 -84048079,48079,1.0 -84048081,48081,1.0 -84048083,48083,1.0 -84048085,48085,1.0 -84048087,48087,1.0 -84048089,48089,1.0 -84048091,48091,1.0 -84048093,48093,1.0 -84048095,48095,1.0 -84048097,48097,1.0 -84048099,48099,1.0 -84048101,48101,1.0 -84048103,48103,1.0 -84048105,48105,1.0 -84048107,48107,1.0 -84048109,48109,1.0 -84048111,48111,1.0 -84048113,48113,1.0 -84048115,48115,1.0 -84048117,48117,1.0 -84048119,48119,1.0 -84048121,48121,1.0 -84048123,48123,1.0 -84048125,48125,1.0 -84048127,48127,1.0 -84048129,48129,1.0 -84048131,48131,1.0 -84048133,48133,1.0 -84048135,48135,1.0 -84048137,48137,1.0 -84048139,48139,1.0 -84048141,48141,1.0 -84048143,48143,1.0 -84048145,48145,1.0 -84048147,48147,1.0 -84048149,48149,1.0 -84048151,48151,1.0 -84048153,48153,1.0 -84048155,48155,1.0 -84048157,48157,1.0 -84048159,48159,1.0 -84048161,48161,1.0 -84048163,48163,1.0 -84048165,48165,1.0 -84048167,48167,1.0 -84048169,48169,1.0 -84048171,48171,1.0 -84048173,48173,1.0 -84048175,48175,1.0 -84048177,48177,1.0 -84048179,48179,1.0 -84048181,48181,1.0 -84048183,48183,1.0 -84048185,48185,1.0 -84048187,48187,1.0 -84048189,48189,1.0 -84048191,48191,1.0 -84048193,48193,1.0 -84048195,48195,1.0 -84048197,48197,1.0 -84048199,48199,1.0 -84048201,48201,1.0 -84048203,48203,1.0 -84048205,48205,1.0 -84048207,48207,1.0 -84048209,48209,1.0 -84048211,48211,1.0 -84048213,48213,1.0 -84048215,48215,1.0 -84048217,48217,1.0 -84048219,48219,1.0 -84048221,48221,1.0 -84048223,48223,1.0 -84048225,48225,1.0 -84048227,48227,1.0 -84048229,48229,1.0 -84048231,48231,1.0 -84048233,48233,1.0 -84048235,48235,1.0 -84048237,48237,1.0 -84048239,48239,1.0 -84048241,48241,1.0 -84048243,48243,1.0 -84048245,48245,1.0 -84048247,48247,1.0 -84048249,48249,1.0 -84048251,48251,1.0 -84048253,48253,1.0 -84048255,48255,1.0 -84048257,48257,1.0 -84048259,48259,1.0 -84048261,48261,1.0 -84048263,48263,1.0 -84048265,48265,1.0 -84048267,48267,1.0 -84048269,48269,1.0 -84048271,48271,1.0 -84048273,48273,1.0 -84048275,48275,1.0 -84048277,48277,1.0 -84048279,48279,1.0 -84048281,48281,1.0 -84048283,48283,1.0 -84048285,48285,1.0 -84048287,48287,1.0 -84048289,48289,1.0 -84048291,48291,1.0 -84048293,48293,1.0 -84048295,48295,1.0 -84048297,48297,1.0 -84048299,48299,1.0 -84048301,48301,1.0 -84048303,48303,1.0 -84048305,48305,1.0 -84048307,48307,1.0 -84048309,48309,1.0 -84048311,48311,1.0 -84048313,48313,1.0 -84048315,48315,1.0 -84048317,48317,1.0 -84048319,48319,1.0 -84048321,48321,1.0 -84048323,48323,1.0 -84048325,48325,1.0 -84048327,48327,1.0 -84048329,48329,1.0 -84048331,48331,1.0 -84048333,48333,1.0 -84048335,48335,1.0 -84048337,48337,1.0 -84048339,48339,1.0 -84048341,48341,1.0 -84048343,48343,1.0 -84048345,48345,1.0 -84048347,48347,1.0 -84048349,48349,1.0 -84048351,48351,1.0 -84048353,48353,1.0 -84048355,48355,1.0 -84048357,48357,1.0 -84048359,48359,1.0 -84048361,48361,1.0 -84048363,48363,1.0 -84048365,48365,1.0 -84048367,48367,1.0 -84048369,48369,1.0 -84048371,48371,1.0 -84048373,48373,1.0 -84048375,48375,1.0 -84048377,48377,1.0 -84048379,48379,1.0 -84048381,48381,1.0 -84048383,48383,1.0 -84048385,48385,1.0 -84048387,48387,1.0 -84048389,48389,1.0 -84048391,48391,1.0 -84048393,48393,1.0 -84048395,48395,1.0 -84048397,48397,1.0 -84048399,48399,1.0 -84048401,48401,1.0 -84048403,48403,1.0 -84048405,48405,1.0 -84048407,48407,1.0 -84048409,48409,1.0 -84048411,48411,1.0 -84048413,48413,1.0 -84048415,48415,1.0 -84048417,48417,1.0 -84048419,48419,1.0 -84048421,48421,1.0 -84048423,48423,1.0 -84048425,48425,1.0 -84048427,48427,1.0 -84048429,48429,1.0 -84048431,48431,1.0 -84048433,48433,1.0 -84048435,48435,1.0 -84048437,48437,1.0 -84048439,48439,1.0 -84048441,48441,1.0 -84048443,48443,1.0 -84048445,48445,1.0 -84048447,48447,1.0 -84048449,48449,1.0 -84048451,48451,1.0 -84048453,48453,1.0 -84048455,48455,1.0 -84048457,48457,1.0 -84048459,48459,1.0 -84048461,48461,1.0 -84048463,48463,1.0 -84048465,48465,1.0 -84048467,48467,1.0 -84048469,48469,1.0 -84048471,48471,1.0 -84048473,48473,1.0 -84048475,48475,1.0 -84048477,48477,1.0 -84048479,48479,1.0 -84048481,48481,1.0 -84048483,48483,1.0 -84048485,48485,1.0 -84048487,48487,1.0 -84048489,48489,1.0 -84048491,48491,1.0 -84048493,48493,1.0 -84048495,48495,1.0 -84048497,48497,1.0 -84048499,48499,1.0 -84048501,48501,1.0 -84048503,48503,1.0 -84048505,48505,1.0 -84048507,48507,1.0 -84049001,49001,1.0 -84049003,49003,1.0 -84049005,49005,1.0 -84049007,49007,1.0 -84049009,49009,1.0 -84049011,49011,1.0 -84049013,49013,1.0 -84049015,49015,1.0 -84049017,49017,1.0 -84049019,49019,1.0 -84049021,49021,1.0 -84049023,49023,1.0 -84049025,49025,1.0 -84049027,49027,1.0 -84049029,49029,1.0 -84049031,49031,1.0 -84049033,49033,1.0 -84049035,49035,1.0 -84049037,49037,1.0 -84049039,49039,1.0 -84049041,49041,1.0 -84049043,49043,1.0 -84049045,49045,1.0 -84049047,49047,1.0 -84049049,49049,1.0 -84049051,49051,1.0 -84049053,49053,1.0 -84049055,49055,1.0 -84049057,49057,1.0 -84050001,50001,1.0 -84050003,50003,1.0 -84050005,50005,1.0 -84050007,50007,1.0 -84050009,50009,1.0 -84050011,50011,1.0 -84050013,50013,1.0 -84050015,50015,1.0 -84050017,50017,1.0 -84050019,50019,1.0 -84050021,50021,1.0 -84050023,50023,1.0 -84050025,50025,1.0 -84050027,50027,1.0 -84051001,51001,1.0 -84051003,51003,1.0 -84051005,51005,1.0 -84051007,51007,1.0 -84051009,51009,1.0 -84051011,51011,1.0 -84051013,51013,1.0 -84051015,51015,1.0 -84051017,51017,1.0 -84051019,51019,1.0 -84051021,51021,1.0 -84051023,51023,1.0 -84051025,51025,1.0 -84051027,51027,1.0 -84051029,51029,1.0 -84051031,51031,1.0 -84051033,51033,1.0 -84051035,51035,1.0 -84051036,51036,1.0 -84051037,51037,1.0 -84051041,51041,1.0 -84051043,51043,1.0 -84051045,51045,1.0 -84051047,51047,1.0 -84051049,51049,1.0 -84051051,51051,1.0 -84051053,51053,1.0 -84051057,51057,1.0 -84051059,51059,1.0 -84051061,51061,1.0 -84051063,51063,1.0 -84051065,51065,1.0 -84051067,51067,1.0 -84051069,51069,1.0 -84051071,51071,1.0 -84051073,51073,1.0 -84051075,51075,1.0 -84051077,51077,1.0 -84051079,51079,1.0 -84051081,51081,1.0 -84051083,51083,1.0 -84051085,51085,1.0 -84051087,51087,1.0 -84051089,51089,1.0 -84051091,51091,1.0 -84051093,51093,1.0 -84051095,51095,1.0 -84051097,51097,1.0 -84051099,51099,1.0 -84051101,51101,1.0 -84051103,51103,1.0 -84051105,51105,1.0 -84051107,51107,1.0 -84051109,51109,1.0 -84051111,51111,1.0 -84051113,51113,1.0 -84051115,51115,1.0 -84051117,51117,1.0 -84051119,51119,1.0 -84051121,51121,1.0 -84051125,51125,1.0 -84051127,51127,1.0 -84051131,51131,1.0 -84051133,51133,1.0 -84051135,51135,1.0 -84051137,51137,1.0 -84051139,51139,1.0 -84051141,51141,1.0 -84051143,51143,1.0 -84051145,51145,1.0 -84051147,51147,1.0 -84051149,51149,1.0 -84051153,51153,1.0 -84051155,51155,1.0 -84051157,51157,1.0 -84051159,51159,1.0 -84051161,51161,1.0 -84051163,51163,1.0 -84051165,51165,1.0 -84051167,51167,1.0 -84051169,51169,1.0 -84051171,51171,1.0 -84051173,51173,1.0 -84051175,51175,1.0 -84051177,51177,1.0 -84051179,51179,1.0 -84051181,51181,1.0 -84051183,51183,1.0 -84051185,51185,1.0 -84051187,51187,1.0 -84051191,51191,1.0 -84051193,51193,1.0 -84051195,51195,1.0 -84051197,51197,1.0 -84051199,51199,1.0 -84051510,51510,1.0 -84051520,51520,1.0 -84051530,51530,1.0 -84051540,51540,1.0 -84051550,51550,1.0 -84051570,51570,1.0 -84051580,51580,1.0 -84051590,51590,1.0 -84051595,51595,1.0 -84051600,51600,1.0 -84051610,51610,1.0 -84051620,51620,1.0 -84051630,51630,1.0 -84051640,51640,1.0 -84051650,51650,1.0 -84051660,51660,1.0 -84051670,51670,1.0 -84051678,51678,1.0 -84051680,51680,1.0 -84051683,51683,1.0 -84051685,51685,1.0 -84051690,51690,1.0 -84051700,51700,1.0 -84051710,51710,1.0 -84051720,51720,1.0 -84051730,51730,1.0 -84051735,51735,1.0 -84051740,51740,1.0 -84051750,51750,1.0 -84051760,51760,1.0 -84051770,51770,1.0 -84051775,51775,1.0 -84051790,51790,1.0 -84051800,51800,1.0 -84051810,51810,1.0 -84051820,51820,1.0 -84051830,51830,1.0 -84051840,51840,1.0 -84053001,53001,1.0 -84053003,53003,1.0 -84053005,53005,1.0 -84053007,53007,1.0 -84053009,53009,1.0 -84053011,53011,1.0 -84053013,53013,1.0 -84053015,53015,1.0 -84053017,53017,1.0 -84053019,53019,1.0 -84053021,53021,1.0 -84053023,53023,1.0 -84053025,53025,1.0 -84053027,53027,1.0 -84053029,53029,1.0 -84053031,53031,1.0 -84053033,53033,1.0 -84053035,53035,1.0 -84053037,53037,1.0 -84053039,53039,1.0 -84053041,53041,1.0 -84053043,53043,1.0 -84053045,53045,1.0 -84053047,53047,1.0 -84053049,53049,1.0 -84053051,53051,1.0 -84053053,53053,1.0 -84053055,53055,1.0 -84053057,53057,1.0 -84053059,53059,1.0 -84053061,53061,1.0 -84053063,53063,1.0 -84053065,53065,1.0 -84053067,53067,1.0 -84053069,53069,1.0 -84053071,53071,1.0 -84053073,53073,1.0 -84053075,53075,1.0 -84053077,53077,1.0 -84054001,54001,1.0 -84054003,54003,1.0 -84054005,54005,1.0 -84054007,54007,1.0 -84054009,54009,1.0 -84054011,54011,1.0 -84054013,54013,1.0 -84054015,54015,1.0 -84054017,54017,1.0 -84054019,54019,1.0 -84054021,54021,1.0 -84054023,54023,1.0 -84054025,54025,1.0 -84054027,54027,1.0 -84054029,54029,1.0 -84054031,54031,1.0 -84054033,54033,1.0 -84054035,54035,1.0 -84054037,54037,1.0 -84054039,54039,1.0 -84054041,54041,1.0 -84054043,54043,1.0 -84054045,54045,1.0 -84054047,54047,1.0 -84054049,54049,1.0 -84054051,54051,1.0 -84054053,54053,1.0 -84054055,54055,1.0 -84054057,54057,1.0 -84054059,54059,1.0 -84054061,54061,1.0 -84054063,54063,1.0 -84054065,54065,1.0 -84054067,54067,1.0 -84054069,54069,1.0 -84054071,54071,1.0 -84054073,54073,1.0 -84054075,54075,1.0 -84054077,54077,1.0 -84054079,54079,1.0 -84054081,54081,1.0 -84054083,54083,1.0 -84054085,54085,1.0 -84054087,54087,1.0 -84054089,54089,1.0 -84054091,54091,1.0 -84054093,54093,1.0 -84054095,54095,1.0 -84054097,54097,1.0 -84054099,54099,1.0 -84054101,54101,1.0 -84054103,54103,1.0 -84054105,54105,1.0 -84054107,54107,1.0 -84054109,54109,1.0 -84055001,55001,1.0 -84055003,55003,1.0 -84055005,55005,1.0 -84055007,55007,1.0 -84055009,55009,1.0 -84055011,55011,1.0 -84055013,55013,1.0 -84055015,55015,1.0 -84055017,55017,1.0 -84055019,55019,1.0 -84055021,55021,1.0 -84055023,55023,1.0 -84055025,55025,1.0 -84055027,55027,1.0 -84055029,55029,1.0 -84055031,55031,1.0 -84055033,55033,1.0 -84055035,55035,1.0 -84055037,55037,1.0 -84055039,55039,1.0 -84055041,55041,1.0 -84055043,55043,1.0 -84055045,55045,1.0 -84055047,55047,1.0 -84055049,55049,1.0 -84055051,55051,1.0 -84055053,55053,1.0 -84055055,55055,1.0 -84055057,55057,1.0 -84055059,55059,1.0 -84055061,55061,1.0 -84055063,55063,1.0 -84055065,55065,1.0 -84055067,55067,1.0 -84055069,55069,1.0 -84055071,55071,1.0 -84055073,55073,1.0 -84055075,55075,1.0 -84055077,55077,1.0 -84055078,55078,1.0 -84055079,55079,1.0 -84055081,55081,1.0 -84055083,55083,1.0 -84055085,55085,1.0 -84055087,55087,1.0 -84055089,55089,1.0 -84055091,55091,1.0 -84055093,55093,1.0 -84055095,55095,1.0 -84055097,55097,1.0 -84055099,55099,1.0 -84055101,55101,1.0 -84055103,55103,1.0 -84055105,55105,1.0 -84055107,55107,1.0 -84055109,55109,1.0 -84055111,55111,1.0 -84055113,55113,1.0 -84055115,55115,1.0 -84055117,55117,1.0 -84055119,55119,1.0 -84055121,55121,1.0 -84055123,55123,1.0 -84055125,55125,1.0 -84055127,55127,1.0 -84055129,55129,1.0 -84055131,55131,1.0 -84055133,55133,1.0 -84055135,55135,1.0 -84055137,55137,1.0 -84055139,55139,1.0 -84055141,55141,1.0 -84056001,56001,1.0 -84056003,56003,1.0 -84056005,56005,1.0 -84056007,56007,1.0 -84056009,56009,1.0 -84056011,56011,1.0 -84056013,56013,1.0 -84056015,56015,1.0 -84056017,56017,1.0 -84056019,56019,1.0 -84056021,56021,1.0 -84056023,56023,1.0 -84056025,56025,1.0 -84056027,56027,1.0 -84056029,56029,1.0 -84056031,56031,1.0 -84056033,56033,1.0 -84056035,56035,1.0 -84056037,56037,1.0 -84056039,56039,1.0 -84056041,56041,1.0 -84056043,56043,1.0 -84056045,56045,1.0 -84070002,25007,0.6191260718163777 -84070002,25019,0.38087392818362226 -84070003,29037,0.09169349717069915 -84070003,29047,0.20457149388375118 -84070003,29095,0.6214027691108004 -84070003,29165,0.08233223983474929 -84070015,49000,1.0 -84070016,49000,1.0 -84070017,49000,1.0 -84070018,49000,1.0 -84070019,49000,1.0 -84070020,49000,1.0 -84080001,01000,1.0 -84080002,02000,1.0 -84080003,03000,1.0 -84080004,04000,1.0 -84080005,05000,1.0 -84080006,06000,1.0 -84080007,07000,1.0 -84080008,08000,1.0 -84080009,09000,1.0 -84080010,10000,1.0 -84080011,11000,1.0 -84080012,12000,1.0 -84080013,13000,1.0 -84080014,14000,1.0 -84080015,15000,1.0 -84080016,16000,1.0 -84080017,17000,1.0 -84080018,18000,1.0 -84080019,19000,1.0 -84080020,20000,1.0 -84080021,21000,1.0 -84080022,22000,1.0 -84080023,23000,1.0 -84080024,24000,1.0 -84080025,25000,1.0 -84080026,26000,1.0 -84080027,27000,1.0 -84080028,28000,1.0 -84080029,29000,1.0 -84080030,30000,1.0 -84080031,31000,1.0 -84080032,32000,1.0 -84080033,33000,1.0 -84080034,34000,1.0 -84080035,35000,1.0 -84080036,36000,1.0 -84080037,37000,1.0 -84080038,38000,1.0 -84080039,39000,1.0 -84080040,40000,1.0 -84080041,41000,1.0 -84080042,42000,1.0 -84080043,43000,1.0 -84080044,44000,1.0 -84080045,45000,1.0 -84080046,46000,1.0 -84080047,47000,1.0 -84080048,48000,1.0 -84080049,49000,1.0 -84080050,50000,1.0 -84080051,51000,1.0 -84080052,52000,1.0 -84080053,53000,1.0 -84080054,54000,1.0 -84080055,55000,1.0 -84080056,56000,1.0 -84090001,01000,1.0 -84090002,02000,1.0 -84090003,03000,1.0 -84090004,04000,1.0 -84090005,05000,1.0 -84090006,06000,1.0 -84090007,07000,1.0 -84090008,08000,1.0 -84090009,09000,1.0 -84090010,10000,1.0 -84090011,11000,1.0 -84090012,12000,1.0 -84090013,13000,1.0 -84090014,14000,1.0 -84090015,15000,1.0 -84090016,16000,1.0 -84090017,17000,1.0 -84090018,18000,1.0 -84090019,19000,1.0 -84090020,20000,1.0 -84090021,21000,1.0 -84090022,22000,1.0 -84090023,23000,1.0 -84090024,24000,1.0 -84090025,25000,1.0 -84090026,26000,1.0 -84090027,27000,1.0 -84090028,28000,1.0 -84090029,29000,1.0 -84090030,30000,1.0 -84090031,31000,1.0 -84090032,32000,1.0 -84090033,33000,1.0 -84090034,34000,1.0 -84090035,35000,1.0 -84090036,36000,1.0 -84090037,37000,1.0 -84090038,38000,1.0 -84090039,39000,1.0 -84090040,40000,1.0 -84090041,41000,1.0 -84090042,42000,1.0 -84090043,43000,1.0 -84090044,44000,1.0 -84090045,45000,1.0 -84090046,46000,1.0 -84090047,47000,1.0 -84090048,48000,1.0 -84090049,49000,1.0 -84090050,50000,1.0 -84090051,51000,1.0 -84090052,52000,1.0 -84090053,53000,1.0 -84090054,54000,1.0 -84090055,55000,1.0 -84090056,56000,1.0 -850,78000,1.0 diff --git a/_delphi_utils_python/delphi_utils/geomap.py b/_delphi_utils_python/delphi_utils/geomap.py index 4782798a0..f43b80504 100644 --- a/_delphi_utils_python/delphi_utils/geomap.py +++ b/_delphi_utils_python/delphi_utils/geomap.py @@ -102,7 +102,6 @@ class GeoMapper: # pylint: disable=too-many-public-methods "state_name": { "pop": "state_pop.csv" }, - "jhu_uid": {"fips": "jhu_uid_fips_table.csv"}, "hhs": {"pop": "hhs_pop.csv"}, "nation": {"pop": "nation_pop.csv"}, } @@ -125,7 +124,7 @@ def __init__(self, census_year=2020): for subkey in self.CROSSWALK_FILENAMES[mainkey] }.union( set(self.CROSSWALK_FILENAMES.keys()) - ) - set(["state", "pop", "jhu_uid"]) + ) - set(["state", "pop"]) for from_code, to_codes in self.CROSSWALK_FILENAMES.items(): for to_code, file_path in to_codes.items(): @@ -159,7 +158,7 @@ def _load_geo_values(self, geo_type): to_code = from_code = "state" elif geo_type == "fips": from_code = "fips" - to_code = "pop" + to_code = "state" else: from_code = "fips" to_code = geo_type @@ -237,7 +236,6 @@ def add_geocode( - fips -> state_code, state_id, state_name, zip, msa, hrr, nation, hhs, chng-fips - chng-fips -> state_code, state_id, state_name - zip -> state_code, state_id, state_name, fips, msa, hrr, nation, hhs - - jhu_uid -> fips - state_x -> state_y (where x and y are in {code, id, name}), nation - state_code -> hhs, nation @@ -245,7 +243,7 @@ def add_geocode( --------- df: pd.DataFrame Input dataframe. - from_code: {'fips', 'chng-fips', 'zip', 'jhu_uid', 'state_code', + from_code: {'fips', 'chng-fips', 'zip', 'state_code', 'state_id', 'state_name'} Specifies the geocode type of the data in from_col. new_code: {'fips', 'chng-fips', 'zip', 'state_code', 'state_id', @@ -351,7 +349,6 @@ def replace_geocode( - fips -> chng-fips, state_code, state_id, state_name, zip, msa, hrr, nation - chng-fips -> state_code, state_id, state_name - zip -> state_code, state_id, state_name, fips, msa, hrr, nation - - jhu_uid -> fips - state_x -> state_y (where x and y are in {code, id, name}), nation - state_code -> hhs, nation @@ -361,7 +358,7 @@ def replace_geocode( Input dataframe. from_col: str Name of the column in data to match and remove. - from_code: {'fips', 'zip', 'jhu_uid', 'state_code', 'state_id', 'state_name'} + from_code: {'fips', 'zip', 'state_code', 'state_id', 'state_name'} Specifies the geocode type of the data in from_col. new_col: str Name of the new column to add to data. diff --git a/_delphi_utils_python/delphi_utils/notebooks/geo_utility_demonstration.ipynb b/_delphi_utils_python/delphi_utils/notebooks/geo_utility_demonstration.ipynb new file mode 100644 index 000000000..ea6fb499d --- /dev/null +++ b/_delphi_utils_python/delphi_utils/notebooks/geo_utility_demonstration.ipynb @@ -0,0 +1,1158 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Geocoding Utility Demo" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "from delphi_utils import GeoMapper\n", + "\n", + "os.chdir(\"_delphi_utils_python/delphi_utils/data/2020/\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basic Utility Usage\n", + "Two functions: `add_geocode` and `replace_geocode`." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fips date count total zip weight\n", + "0 01123 2018-01-01 2.0 4.0 35010 0.461001\n", + "1 01123 2018-01-01 2.0 4.0 35072 0.013264\n", + "2 01123 2018-01-01 2.0 4.0 35089 0.017661\n", + "3 01123 2018-01-01 2.0 4.0 36078 0.113826\n", + "4 01123 2018-01-01 2.0 4.0 36255 0.000433\n", + " date zip count total\n", + "0 2018-01-01 00602 0.000000 0.000000\n", + "1 2018-01-01 00610 0.000000 0.000000\n", + "2 2018-01-01 00676 0.000000 0.000000\n", + "3 2018-01-01 00677 0.000000 0.000000\n", + "4 2018-01-01 35010 0.922001 1.844002\n" + ] + } + ], + "source": [ + "fips_data = pd.DataFrame({\n", + " \"fips\":[1123,48253,72003,18181],\n", + " \"date\":[pd.Timestamp('2018-01-01')]*4,\n", + " \"count\": [2,1,np.nan,10021],\n", + " \"total\": [4,1,np.nan,100001]\n", + " })\n", + "\n", + "# Add a new column with the new code\n", + "gmpr = GeoMapper()\n", + "df = gmpr.add_geocode(fips_data, \"fips\", \"zip\")\n", + "print(df.head())\n", + "\n", + "# Convert a column with the new code\n", + "gmpr = GeoMapper()\n", + "df = gmpr.replace_geocode(fips_data, \"fips\", \"zip\")\n", + "print(df.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
datehrrcounttotal
02018-01-0111.7723473.544694
12018-01-011837157.39240471424.648014
22018-01-011842863.60759628576.351986
32018-01-013821.0000001.000000
42018-01-0170.2276530.455306
\n", + "
" + ], + "text/plain": [ + " date hrr count total\n", + "0 2018-01-01 1 1.772347 3.544694\n", + "1 2018-01-01 183 7157.392404 71424.648014\n", + "2 2018-01-01 184 2863.607596 28576.351986\n", + "3 2018-01-01 382 1.000000 1.000000\n", + "4 2018-01-01 7 0.227653 0.455306" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gmpr = GeoMapper()\n", + "df = gmpr.replace_geocode(fips_data, \"fips\", \"hrr\")\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = gmpr.replace_geocode(fips_data, \"fips\", \"hrr\")\n", + "df2 = gmpr.replace_geocode(fips_data, \"fips\", \"zip\")\n", + "df2 = gmpr.replace_geocode(df2, \"zip\", \"hrr\")\n", + "np.allclose(df[['count', 'total']].values, df2[['count', 'total']].values)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Utility Inner Workings" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deriving a crosswalk\n", + "Given two crosswalks, we create a derived crosswalk by merging on the common code. This is the method used in `geo_data_proc.py`." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
zipweightstate_code
0006010.99434672
1006010.00565472
2006021.00000072
3006031.00000072
4006060.94875372
............
44405999231.00000002
44406999251.00000002
44407999261.00000002
44408999271.00000002
44409999291.00000002
\n", + "

44410 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " zip weight state_code\n", + "0 00601 0.994346 72\n", + "1 00601 0.005654 72\n", + "2 00602 1.000000 72\n", + "3 00603 1.000000 72\n", + "4 00606 0.948753 72\n", + "... ... ... ...\n", + "44405 99923 1.000000 02\n", + "44406 99925 1.000000 02\n", + "44407 99926 1.000000 02\n", + "44408 99927 1.000000 02\n", + "44409 99929 1.000000 02\n", + "\n", + "[44410 rows x 3 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "state_df = pd.read_csv(\"state_codes_table.csv\", dtype={\"state_code\": str, \"state_id\": str, \"state_name\": str})\n", + "zip_fips_df = pd.read_csv(\"zip_fips_table.csv\", dtype={\"zip\": str, \"fips\": str})\n", + "zip_fips_df[\"state_code\"] = zip_fips_df[\"fips\"].str[:2]\n", + "zip_state_code_df = zip_fips_df.merge(state_df, on=\"state_code\", how=\"left\").drop(columns=[\"fips\", \"state_id\", \"state_name\"])\n", + "assert 52 == len(zip_state_code_df.state_code.unique())\n", + "zip_state_code_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A weighted crosswalk requires a summation." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fipshrrweight
00100110.039105
10100170.960895
2010031340.031998
30100360.968002
40100520.974360
............
5178560392740.003804
5179560394230.996196
5180560414231.000000
5181560432741.000000
5182560454571.000000
\n", + "

5183 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " fips hrr weight\n", + "0 01001 1 0.039105\n", + "1 01001 7 0.960895\n", + "2 01003 134 0.031998\n", + "3 01003 6 0.968002\n", + "4 01005 2 0.974360\n", + "... ... ... ...\n", + "5178 56039 274 0.003804\n", + "5179 56039 423 0.996196\n", + "5180 56041 423 1.000000\n", + "5181 56043 274 1.000000\n", + "5182 56045 457 1.000000\n", + "\n", + "[5183 rows x 3 columns]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "FIPS_ZIP_OUT_FILENAME = \"fips_zip_table.csv\"\n", + "ZIP_HRR_OUT_FILENAME = \"zip_hrr_table.csv\"\n", + "from os.path import join, isfile\n", + "\n", + "fz_df = pd.read_csv(\n", + " FIPS_ZIP_OUT_FILENAME,\n", + " dtype={\"fips\": str, \"zip\": str, \"weight\": float},\n", + ")\n", + "zh_df = pd.read_csv(\n", + " ZIP_HRR_OUT_FILENAME,\n", + " dtype={\"zip\": str, \"hrr\": str},\n", + ")\n", + "\n", + "df = (fz_df.merge(zh_df, on=\"zip\", how=\"left\")\n", + " .drop(columns=\"zip\")\n", + " .groupby([\"fips\", \"hrr\"])\n", + " .sum()\n", + " .reset_index())\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a geocode column\n", + "Adding a new geocode column is a merge using a matching geocode (left or inner joins, depending on whether we wish to keep NAs or not). Here we translate from zip to fips on some faux data. Since this a merge on the left, invalid ZIP values present in the data, but not present in the crosswalk simply get NAN entries in their columns. If the crosswalk is weighted, a \"weights\" column is added also." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
zipdatecounttotalfipsweight
0451402018-01-012.02.0390250.523570
1451402018-01-012.02.0390610.288115
2451402018-01-012.02.0391650.188315
3451472018-01-02NaN20.0390250.938776
4451472018-01-02NaN20.0390610.061224
5005002018-01-0320.040.0NaNNaN
6956162018-01-04100.0NaN061131.000000
7956182018-01-0521.020.0060950.003372
8956182018-01-0521.020.0061130.996628
\n", + "
" + ], + "text/plain": [ + " zip date count total fips weight\n", + "0 45140 2018-01-01 2.0 2.0 39025 0.523570\n", + "1 45140 2018-01-01 2.0 2.0 39061 0.288115\n", + "2 45140 2018-01-01 2.0 2.0 39165 0.188315\n", + "3 45147 2018-01-02 NaN 20.0 39025 0.938776\n", + "4 45147 2018-01-02 NaN 20.0 39061 0.061224\n", + "5 00500 2018-01-03 20.0 40.0 NaN NaN\n", + "6 95616 2018-01-04 100.0 NaN 06113 1.000000\n", + "7 95618 2018-01-05 21.0 20.0 06095 0.003372\n", + "8 95618 2018-01-05 21.0 20.0 06113 0.996628" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "zip_data = pd.DataFrame(\n", + " {\n", + " \"zip\": [\"45140\", \"45147\", \"00500\", \"95616\", \"95618\"],\n", + " \"date\": pd.date_range(\"2018-01-01\", periods=5),\n", + " \"count\": [2, np.nan, 20, 100, 21],\n", + " \"total\": [2, 20, 40, np.nan, 20]\n", + " }\n", + " )\n", + "zip_fips_df = pd.read_csv(\"zip_fips_table.csv\", dtype={\"zip\": str, \"fips\": str})\n", + "\n", + "data_df = zip_data.merge(zip_fips_df, left_on=\"zip\", right_on=\"zip\", how=\"left\")\n", + "data_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Replacing a column\n", + "If there are no weights, we just drop the old column and we're done. If there are weights, we multiply the data by the weights and sum over the old codes. A helpful way to think of the operation is a multiplication of the data matrix (row vectors are columns of the dataframe) $D$ by the weights matrix $W$, resulting in $D*W$. The weights matrix is row-stochastic (i.e. rows sum to 1). \n", + "\n", + "Note that the aggregation step (i.e. linear combination of source code values) requires a decision for how to handle NA values. We choose to zero-fill them to avoid propagating NAs." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
datefipscounttotal
02018-01-01390251.0471401.047140
12018-01-01390610.5762290.576229
22018-01-01391650.3766310.376631
32018-01-02390250.00000018.775510
42018-01-02390610.0000001.224490
52018-01-0406113100.0000000.000000
62018-01-05060950.0708190.067446
72018-01-050611320.92918119.932554
\n", + "
" + ], + "text/plain": [ + " date fips count total\n", + "0 2018-01-01 39025 1.047140 1.047140\n", + "1 2018-01-01 39061 0.576229 0.576229\n", + "2 2018-01-01 39165 0.376631 0.376631\n", + "3 2018-01-02 39025 0.000000 18.775510\n", + "4 2018-01-02 39061 0.000000 1.224490\n", + "5 2018-01-04 06113 100.000000 0.000000\n", + "6 2018-01-05 06095 0.070819 0.067446\n", + "7 2018-01-05 06113 20.929181 19.932554" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_df = data_df.drop(columns=\"zip\")\n", + "\n", + "# Multiply and aggregate\n", + "data_df[[\"count\", \"total\"]] = data_df[[\"count\", \"total\"]].multiply(data_df[\"weight\"], axis=0)\n", + "data_df = (data_df.drop(\"weight\", axis=1)\n", + " .groupby([\"date\", \"fips\"])\n", + " .sum()\n", + " .reset_index())\n", + "data_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Building population weights for FIPS <-> ZIP" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pop
fipszip
720010060118465
7214100601105
720030060241520
720050060354689
72093006066276
.........
021989992387
99925819
999261460
9992794
02275999292338
\n", + "

44410 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " pop\n", + "fips zip \n", + "72001 00601 18465\n", + "72141 00601 105\n", + "72003 00602 41520\n", + "72005 00603 54689\n", + "72093 00606 6276\n", + "... ...\n", + "02198 99923 87\n", + " 99925 819\n", + " 99926 1460\n", + " 99927 94\n", + "02275 99929 2338\n", + "\n", + "[44410 rows x 1 columns]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "FIPS_BY_ZIP_POP_URL = (\n", + " \"https://www2.census.gov/geo/docs/maps-data/data/rel/zcta_county_rel_10.txt?#\"\n", + ")\n", + "pop_df = pd.read_csv(FIPS_BY_ZIP_POP_URL)\n", + "\n", + "# Create the FIPS column by combining the state and county codes\n", + "pop_df[\"fips\"] = pop_df[\"STATE\"].astype(str).str.zfill(2) + pop_df[\"COUNTY\"].astype(\n", + " str\n", + ").str.zfill(3)\n", + "\n", + "# Create the ZIP column by adding leading zeros to the ZIP\n", + "pop_df[\"zip\"] = pop_df[\"ZCTA5\"].astype(str).str.zfill(5)\n", + "\n", + "# Pare down the dataframe to just the relevant columns: zip, fips, and population\n", + "pop_df = pop_df[[\"zip\", \"fips\", \"POPPT\"]].rename(columns={\"POPPT\": \"pop\"})\n", + "\n", + "pop_df.set_index(\n", + " [\"fips\", \"zip\"], inplace=True\n", + ") # can we do without this and resetting index below?\n", + "pop_df" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "312462997" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 2010 Census, corresponds to 308 million population figure\n", + "pop_df[\"pop\"].sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## US Census FIPS <-> ZIP crosswalk versus simplemaps.com\n", + "We're switching to the US Census table for safety. The FIPS to ZIP weights in the two are essentially the same." + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "326256148\n" + ] + } + ], + "source": [ + "df_census = GeoMapper().load_crosswalk(\"zip\", \"fips\")\n", + "df_simplemaps = pd.read_csv(\"../../data_proc/geomap/uszips.csv\")\n", + "print(df_simplemaps[\"population\"].sum())" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "df_simplemaps[\"county_weights\"] = df_simplemaps[\"county_weights\"].transform(lambda x: list(eval(x).items()))\n", + "df_simplemaps = df_simplemaps.explode(\"county_weights\")\n", + "df_simplemaps[\"county_fips\"] = df_simplemaps[\"county_weights\"].apply(lambda x: x[0])\n", + "df_simplemaps[\"county_weights\"] = df_simplemaps[\"county_weights\"].apply(lambda x: x[1]/100)\n", + "df_simplemaps = df_simplemaps.rename(columns={\"county_fips\": \"fips\"})\n", + "df_simplemaps[\"zip\"] = df_simplemaps[\"zip\"].astype(str).str.zfill(5)\n", + "df_simplemaps[\"fips\"] = df_simplemaps[\"fips\"].astype(str).str.zfill(5)\n", + "df = df_census.merge(df_simplemaps, on=[\"zip\", \"fips\"], how=\"left\")" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.1494991956541422e-05" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"weight\"].sub(df[\"county_weights\"]).abs().mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.307895680646709e-09" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "1 - df[\"weight\"].corr(df[\"county_weights\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "113.4559999704361 147.0\n" + ] + } + ], + "source": [ + "df = df.dropna(subset=[\"population\"])\n", + "print(df.groupby(\"zip\")[\"population\"].unique().sum()[0] - df[\"population\"].multiply(df[\"county_weights\"]).sum(),\n", + " df.groupby(\"zip\")[\"population\"].unique().sum()[0] - df[\"population\"].multiply(df[\"weight\"]).sum())" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## We have updated the FIPS to HRR tables since the last version (James' version)\n", + "And they haven't changed by very much. \n", + "Note: Since JHU is now deactivated, this code may not work." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df_new = GeoMapper().load_crosswalk(\"fips\", \"hrr\")\n", + "df_old = pd.read_csv(\"https://raw.githubusercontent.com/cmu-delphi/covidcast-indicators/jhu_fix_0824/_delphi_utils_python/delphi_utils/data/fips_hrr_cross.csv?token=AANZ76Q7CUS7REWHRIGNKV27KHH6U\", dtype={\"fips\": str, \"hrr\": str, \"weight\": float})\n", + "df_old[\"fips\"] = df_old[\"fips\"].str.zfill(5)\n", + "df = df_new.groupby([\"hrr\", \"fips\"]).sum().reset_index().merge(df_old, on=[\"fips\", \"hrr\"], how=\"left\")\n", + "df.weight_x.sub(df.weight_y).abs().mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding HHS codes\n", + "These are the department of health and human services region codes. They aggregate states into larger regions. I couldn't find a crosswalk file on the web, so I built one manually below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"../../data_proc/geomap/hhs.txt\") as f:\n", + " s = f.readlines()\n", + "\n", + "# Process text from https://www.hhs.gov/about/agencies/iea/regional-offices/index.html\n", + "s = [int(st[7:9]) if \"Region\" in st else st for st in s]\n", + "s = [st.strip().split(\", \") if type(st) == str else st for st in s]\n", + "d = {s[i]:s[i+1] for i in range(0, len(s), 2)}\n", + "d = {key:[s.lstrip(' and') for s in d[key]] for key in d}\n", + "\n", + "# Flatten\n", + "d = [[(key,x) for x in d[key]] for key in d]\n", + "d = [x for y in d for x in y]\n", + "\n", + "# Make naming adjustments\n", + "d.remove((2, \"the Virgin Islands\"))\n", + "d.append((2, \"U.S. Virgin Islands\"))\n", + "d.remove((9, \"Commonwealth of the Northern Mariana Islands\"))\n", + "d.append((9, \"Northern Mariana Islands\"))\n", + "\n", + "# Make dataframe\n", + "hhs = pd.DataFrame(d, columns=[\"hhs\", \"state_name\"])\n", + "hhs['hhs'] = hhs['hhs'].astype(str)\n", + "\n", + "ss_df = pd.read_csv(\"state_codes_table.csv\",\n", + " dtype={\"state_code\": str, \"state_name\": str, \"state_id\": str},\n", + ")\n", + "\n", + "ss_df = ss_df.merge(hhs, on=\"state_name\", how=\"left\").dropna()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1 (main, Dec 23 2022, 09:28:24) [Clang 14.0.0 (clang-1400.0.29.202)]" + }, + "vscode": { + "interpreter": { + "hash": "5c7b89af1651d0b8571dde13640ecdccf7d5a6204171d6ab33e7c296e100e08a" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_delphi_utils_python/delphi_utils/validator/PLANS.md b/_delphi_utils_python/delphi_utils/validator/PLANS.md index d7ca0c263..6f490aeec 100644 --- a/_delphi_utils_python/delphi_utils/validator/PLANS.md +++ b/_delphi_utils_python/delphi_utils/validator/PLANS.md @@ -41,7 +41,7 @@ ### Starter/small issues -* Backfill problems, especially with JHU and USA Facts, where a change to old data results in a datapoint that doesn’t agree with surrounding data ([JHU examples](https://delphi-org.slack.com/archives/CF9G83ZJ9/p1600729151013900)) or is very different from the value it replaced. If date is already in the API, have any values changed significantly within the "backfill" window (use span_length setting). See [this](https://github.com/cmu-delphi/covidcast-indicators/pull/155#discussion_r504195207) for context. +* Backfill problems, especially with JHU and USA Facts (Both are now deactivated), where a change to old data results in a datapoint that doesn’t agree with surrounding data ([JHU examples](https://delphi-org.slack.com/archives/CF9G83ZJ9/p1600729151013900)) or is very different from the value it replaced. If date is already in the API, have any values changed significantly within the "backfill" window (use span_length setting). See [this](https://github.com/cmu-delphi/covidcast-indicators/pull/155#discussion_r504195207) for context. * Run check_missing_date_files (or similar) on every geo type-signal type separately in comparative checks loop. ### Larger issues diff --git a/_delphi_utils_python/delphi_utils/validator/static.py b/_delphi_utils_python/delphi_utils/validator/static.py index d58096d97..d4449b27b 100644 --- a/_delphi_utils_python/delphi_utils/validator/static.py +++ b/_delphi_utils_python/delphi_utils/validator/static.py @@ -166,8 +166,6 @@ def _get_valid_geo_values(self, geo_type): gmpr = GeoMapper() valid_geos = gmpr.get_geo_values(geomap_type) valid_geos |= set(self.params.additional_valid_geo_values.get(geo_type, [])) - if geo_type == "county": - valid_geos |= set(x + "000" for x in gmpr.get_geo_values("state_code")) return valid_geos def check_bad_geo_id_value(self, df_to_test, filename, geo_type, report): diff --git a/_delphi_utils_python/setup.py b/_delphi_utils_python/setup.py index a1dc976e3..da9802263 100644 --- a/_delphi_utils_python/setup.py +++ b/_delphi_utils_python/setup.py @@ -26,7 +26,7 @@ setup( name="delphi_utils", - version="0.3.14", + version="0.3.15", description="Shared Utility Functions for Indicators", long_description=long_description, long_description_content_type="text/markdown", diff --git a/_delphi_utils_python/tests/test_geomap.py b/_delphi_utils_python/tests/test_geomap.py index 78fccca77..ab86c143d 100644 --- a/_delphi_utils_python/tests/test_geomap.py +++ b/_delphi_utils_python/tests/test_geomap.py @@ -112,24 +112,6 @@ class TestGeoMapper: "count": [2, 1, 5, 7, 3, 10021], } ) - jhu_uid_data = pd.DataFrame( - { - "jhu_uid": [ - 84048315, - 84048137, - 84013299, - 84013299, - 84070002, - 84000013, - 84090002, - ], - "timestamp": [pd.Timestamp("2018-01-01")] * 3 - + [pd.Timestamp("2018-01-03")] * 3 - + [pd.Timestamp("2018-01-01")], - "count": [1, 2, 3, 4, 8, 5, 20], - "total": [2, 4, 7, 11, 100, 10, 40], - } - ) state_data = pd.DataFrame( { "state_code": ["01", "02", "04"], @@ -148,7 +130,6 @@ class TestGeoMapper: "count": [7], } ) - # jhu_big_data = pd.read_csv("test_dir/small_deaths.csv") # Loading tests updated 8/26 def test_crosswalks(self, geomapper): @@ -161,8 +142,6 @@ def test_crosswalks(self, geomapper): ) # some weight discrepancy is fine for HRR cw = geomapper.get_crosswalk(from_code="fips", to_code="zip") assert cw.groupby("fips")["weight"].sum().round(5).eq(1.0).all() - cw = geomapper.get_crosswalk(from_code="jhu_uid", to_code="fips") - assert cw.groupby("jhu_uid")["weight"].sum().round(5).eq(1.0).all() cw = geomapper.get_crosswalk(from_code="zip", to_code="fips") assert cw.groupby("zip")["weight"].sum().round(5).eq(1.0).all() # weight discrepancy is fine for MSA, for the same reasons as HRR @@ -194,10 +173,6 @@ def test_load_fips_chngfips_table(self, geomapper): chngfips_data = geomapper.get_crosswalk(from_code="fips", to_code="chng-fips") assert tuple(chngfips_data.columns) == ("fips", "chng-fips") - def test_load_jhu_uid_fips_table(self, geomapper): - jhu_data = geomapper.get_crosswalk(from_code="jhu_uid", to_code="fips") - assert np.allclose(jhu_data.groupby("jhu_uid").sum(numeric_only=True), 1.0) - def test_load_zip_hrr_table(self, geomapper): zip_data = geomapper.get_crosswalk(from_code="zip", to_code="hrr") assert pd.api.types.is_string_dtype(zip_data["zip"]) @@ -398,13 +373,13 @@ def test_add_geocode(self, geomapper): def test_get_geos(self, geomapper): assert geomapper.get_geo_values("nation") == {"us"} assert geomapper.get_geo_values("hhs") == set(str(i) for i in range(1, 11)) - assert len(geomapper.get_geo_values("fips")) == 3236 + assert len(geomapper.get_geo_values("fips")) == 3293 assert len(geomapper.get_geo_values("chng-fips")) == 2711 assert len(geomapper.get_geo_values("state_id")) == 60 assert len(geomapper.get_geo_values("zip")) == 32976 def test_get_geos_2019(self, geomapper_2019): - assert len(geomapper_2019.get_geo_values("fips")) == 3235 + assert len(geomapper_2019.get_geo_values("fips")) == 3292 assert len(geomapper_2019.get_geo_values("chng-fips")) == 2710 def test_get_geos_within(self, geomapper): diff --git a/changehc/version.cfg b/changehc/version.cfg index b5059a674..f48115d3f 100644 --- a/changehc/version.cfg +++ b/changehc/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/claims_hosp/version.cfg b/claims_hosp/version.cfg index b5059a674..f48115d3f 100644 --- a/claims_hosp/version.cfg +++ b/claims_hosp/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/doctor_visits/version.cfg b/doctor_visits/version.cfg index b5059a674..f48115d3f 100644 --- a/doctor_visits/version.cfg +++ b/doctor_visits/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/dsew_community_profile/version.cfg b/dsew_community_profile/version.cfg index b5059a674..f48115d3f 100644 --- a/dsew_community_profile/version.cfg +++ b/dsew_community_profile/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/google_symptoms/version.cfg b/google_symptoms/version.cfg index b5059a674..f48115d3f 100644 --- a/google_symptoms/version.cfg +++ b/google_symptoms/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/hhs_hosp/version.cfg b/hhs_hosp/version.cfg index b5059a674..f48115d3f 100644 --- a/hhs_hosp/version.cfg +++ b/hhs_hosp/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/nchs_mortality/version.cfg b/nchs_mortality/version.cfg index b5059a674..f48115d3f 100644 --- a/nchs_mortality/version.cfg +++ b/nchs_mortality/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/nowcast/version.cfg b/nowcast/version.cfg index b5059a674..f48115d3f 100644 --- a/nowcast/version.cfg +++ b/nowcast/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/quidel_covidtest/version.cfg b/quidel_covidtest/version.cfg index b5059a674..f48115d3f 100644 --- a/quidel_covidtest/version.cfg +++ b/quidel_covidtest/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/sir_complainsalot/version.cfg b/sir_complainsalot/version.cfg index b5059a674..f48115d3f 100644 --- a/sir_complainsalot/version.cfg +++ b/sir_complainsalot/version.cfg @@ -1 +1 @@ -current_version = 0.3.37 +current_version = 0.3.38 diff --git a/testing_utils/geo_utility_demonstration.ipynb b/testing_utils/geo_utility_demonstration.ipynb deleted file mode 100644 index 1aaf2c2fd..000000000 --- a/testing_utils/geo_utility_demonstration.ipynb +++ /dev/null @@ -1,517 +0,0 @@ -{ - "cells": [ - { - "source": [ - "# Geocoding Utility Demo" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import pandas as pd\n", - "import numpy as np\n", - "\n", - "from delphi_utils import GeoMapper\n", - "\n", - "os.chdir(\"_delphi_utils_python/delphi_utils/data/\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Basic Utility Usage\n", - "Two functions: `add_geocode` and `replace_geocode`." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": "fips date count total zip weight\n0 01123 2018-01-01 2.0 4.0 35010 0.461001\n1 01123 2018-01-01 2.0 4.0 35072 0.013264\n2 01123 2018-01-01 2.0 4.0 35089 0.017661\n3 01123 2018-01-01 2.0 4.0 36078 0.113826\n4 01123 2018-01-01 2.0 4.0 36255 0.000433\n date zip count total\n0 2018-01-01 00602 0.000000 0.000000\n1 2018-01-01 00610 0.000000 0.000000\n2 2018-01-01 00676 0.000000 0.000000\n3 2018-01-01 00677 0.000000 0.000000\n4 2018-01-01 35010 0.922001 1.844002\n" - } - ], - "source": [ - "fips_data = pd.DataFrame({\n", - " \"fips\":[1123,48253,72003,18181],\n", - " \"date\":[pd.Timestamp('2018-01-01')]*4,\n", - " \"count\": [2,1,np.nan,10021],\n", - " \"total\": [4,1,np.nan,100001]\n", - " })\n", - "\n", - "# Add a new column with the new code\n", - "gmpr = GeoMapper()\n", - "df = gmpr.add_geocode(fips_data, \"fips\", \"zip\")\n", - "print(df.head())\n", - "\n", - "# Convert a column with the new code\n", - "gmpr = GeoMapper()\n", - "df = gmpr.replace_geocode(fips_data, \"fips\", \"zip\")\n", - "print(df.head())" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": " date hrr count total\n0 2018-01-01 1 1.772347 3.544694\n1 2018-01-01 183 7157.392404 71424.648014\n2 2018-01-01 184 2863.607596 28576.351986\n3 2018-01-01 382 1.000000 1.000000\n4 2018-01-01 7 0.227653 0.455306", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
datehrrcounttotal
02018-01-0111.7723473.544694
12018-01-011837157.39240471424.648014
22018-01-011842863.60759628576.351986
32018-01-013821.0000001.000000
42018-01-0170.2276530.455306
\n
" - }, - "metadata": {}, - "execution_count": 16 - } - ], - "source": [ - "gmpr = GeoMapper()\n", - "df = gmpr.replace_geocode(fips_data, \"fips\", \"hrr\")\n", - "df" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "True" - }, - "metadata": {}, - "execution_count": 19 - } - ], - "source": [ - "df = gmpr.replace_geocode(fips_data, \"fips\", \"hrr\")\n", - "df2 = gmpr.replace_geocode(fips_data, \"fips\", \"zip\")\n", - "df2 = gmpr.replace_geocode(df2, \"zip\", \"hrr\")\n", - "np.allclose(df[['count', 'total']].values, df2[['count', 'total']].values)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Utility Inner Workings" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Deriving a crosswalk\n", - "Given two crosswalks, we create a derived crosswalk by merging on the common code. This is the method used in `geo_data_proc.py`." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": " zip weight state_code\n0 00601 0.994346 72\n1 00601 0.005654 72\n2 00602 1.000000 72\n3 00603 1.000000 72\n4 00606 0.948753 72\n... ... ... ...\n44405 99923 1.000000 02\n44406 99925 1.000000 02\n44407 99926 1.000000 02\n44408 99927 1.000000 02\n44409 99929 1.000000 02\n\n[44410 rows x 3 columns]", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
zipweightstate_code
0006010.99434672
1006010.00565472
2006021.00000072
3006031.00000072
4006060.94875372
............
44405999231.00000002
44406999251.00000002
44407999261.00000002
44408999271.00000002
44409999291.00000002
\n

44410 rows × 3 columns

\n
" - }, - "metadata": {}, - "execution_count": 21 - } - ], - "source": [ - "state_df = pd.read_csv(\"state_codes_table.csv\", dtype={\"state_code\": str, \"state_id\": str, \"state_name\": str})\n", - "zip_fips_df = pd.read_csv(\"zip_fips_table.csv\", dtype={\"zip\": str, \"fips\": str})\n", - "zip_fips_df[\"state_code\"] = zip_fips_df[\"fips\"].str[:2]\n", - "zip_state_code_df = zip_fips_df.merge(state_df, on=\"state_code\", how=\"left\").drop(columns=[\"fips\", \"state_id\", \"state_name\"])\n", - "assert 52 == len(zip_state_code_df.state_code.unique())\n", - "zip_state_code_df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A weighted crosswalk requires a summation." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": " fips hrr weight\n0 01001 1 0.039105\n1 01001 7 0.960895\n2 01003 134 0.031998\n3 01003 6 0.968002\n4 01005 2 0.974360\n... ... ... ...\n5178 56039 274 0.003804\n5179 56039 423 0.996196\n5180 56041 423 1.000000\n5181 56043 274 1.000000\n5182 56045 457 1.000000\n\n[5183 rows x 3 columns]", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
fipshrrweight
00100110.039105
10100170.960895
2010031340.031998
30100360.968002
40100520.974360
............
5178560392740.003804
5179560394230.996196
5180560414231.000000
5181560432741.000000
5182560454571.000000
\n

5183 rows × 3 columns

\n
" - }, - "metadata": {}, - "execution_count": 25 - } - ], - "source": [ - "FIPS_ZIP_OUT_FILENAME = \"fips_zip_table.csv\"\n", - "ZIP_HRR_OUT_FILENAME = \"zip_hrr_table.csv\"\n", - "OUTPUT_DIR = \"../../delphi_utils/data\"\n", - "from os.path import join, isfile\n", - "\n", - "fz_df = pd.read_csv(\n", - " join(OUTPUT_DIR, FIPS_ZIP_OUT_FILENAME),\n", - " dtype={\"fips\": str, \"zip\": str, \"weight\": float},\n", - ")\n", - "zh_df = pd.read_csv(\n", - " join(OUTPUT_DIR, ZIP_HRR_OUT_FILENAME),\n", - " dtype={\"zip\": str, \"hrr\": str},\n", - ")\n", - "\n", - "df = (fz_df.merge(zh_df, on=\"zip\", how=\"left\")\n", - " .drop(columns=\"zip\")\n", - " .groupby([\"fips\", \"hrr\"])\n", - " .sum()\n", - " .reset_index())\n", - "df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding a geocode column\n", - "Adding a new geocode column is a merge using a matching geocode (left or inner joins, depending on whether we wish to keep NAs or not). Here we translate from zip to fips on some faux data. Since this a merge on the left, invalid ZIP values present in the data, but not present in the crosswalk simply get NAN entries in their columns. If the crosswalk is weighted, a \"weights\" column is added also." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": " zip date count total fips weight\n0 45140 2018-01-01 2.0 2.0 39025 0.523570\n1 45140 2018-01-01 2.0 2.0 39061 0.288115\n2 45140 2018-01-01 2.0 2.0 39165 0.188315\n3 45147 2018-01-02 NaN 20.0 39025 0.938776\n4 45147 2018-01-02 NaN 20.0 39061 0.061224\n5 00500 2018-01-03 20.0 40.0 NaN NaN\n6 95616 2018-01-04 100.0 NaN 06113 1.000000\n7 95618 2018-01-05 21.0 20.0 06095 0.003372\n8 95618 2018-01-05 21.0 20.0 06113 0.996628", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
zipdatecounttotalfipsweight
0451402018-01-012.02.0390250.523570
1451402018-01-012.02.0390610.288115
2451402018-01-012.02.0391650.188315
3451472018-01-02NaN20.0390250.938776
4451472018-01-02NaN20.0390610.061224
5005002018-01-0320.040.0NaNNaN
6956162018-01-04100.0NaN061131.000000
7956182018-01-0521.020.0060950.003372
8956182018-01-0521.020.0061130.996628
\n
" - }, - "metadata": {}, - "execution_count": 27 - } - ], - "source": [ - "zip_data = pd.DataFrame(\n", - " {\n", - " \"zip\": [\"45140\", \"45147\", \"00500\", \"95616\", \"95618\"],\n", - " \"date\": pd.date_range(\"2018-01-01\", periods=5),\n", - " \"count\": [2, np.nan, 20, 100, 21],\n", - " \"total\": [2, 20, 40, np.nan, 20]\n", - " }\n", - " )\n", - "zip_fips_df = pd.read_csv(\"zip_fips_table.csv\", dtype={\"zip\": str, \"fips\": str})\n", - "\n", - "data_df = zip_data.merge(zip_fips_df, left_on=\"zip\", right_on=\"zip\", how=\"left\")\n", - "data_df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Replacing a column\n", - "If there are no weights, we just drop the old column and we're done. If there are weights, we multiply the data by the weights and sum over the old codes. A helpful way to think of the operation is a multiplication of the data matrix (row vectors are columns of the dataframe) $D$ by the weights matrix $W$, resulting in $D*W$. The weights matrix is row-stochastic (i.e. rows sum to 1). \n", - "\n", - "Note that the aggregation step (i.e. linear combination of source code values) requires a decision for how to handle NA values. We choose to zero-fill them to avoid propagating NAs." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": " date fips count total\n0 2018-01-01 39025 1.047140 1.047140\n1 2018-01-01 39061 0.576229 0.576229\n2 2018-01-01 39165 0.376631 0.376631\n3 2018-01-02 39025 0.000000 18.775510\n4 2018-01-02 39061 0.000000 1.224490\n5 2018-01-04 06113 100.000000 0.000000\n6 2018-01-05 06095 0.070819 0.067446\n7 2018-01-05 06113 20.929181 19.932554", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
datefipscounttotal
02018-01-01390251.0471401.047140
12018-01-01390610.5762290.576229
22018-01-01391650.3766310.376631
32018-01-02390250.00000018.775510
42018-01-02390610.0000001.224490
52018-01-0406113100.0000000.000000
62018-01-05060950.0708190.067446
72018-01-050611320.92918119.932554
\n
" - }, - "metadata": {}, - "execution_count": 28 - } - ], - "source": [ - "data_df = data_df.drop(columns=\"zip\")\n", - "\n", - "# Multiply and aggregate\n", - "data_df[[\"count\", \"total\"]] = data_df[[\"count\", \"total\"]].multiply(data_df[\"weight\"], axis=0)\n", - "data_df = (data_df.drop(\"weight\", axis=1)\n", - " .groupby([\"date\", \"fips\"])\n", - " .sum()\n", - " .reset_index())\n", - "data_df" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Building population weights for FIPS <-> ZIP" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": " pop\nfips zip \n72001 00601 18465\n72141 00601 105\n72003 00602 41520\n72005 00603 54689\n72093 00606 6276\n... ...\n02198 99923 87\n 99925 819\n 99926 1460\n 99927 94\n02275 99929 2338\n\n[44410 rows x 1 columns]", - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
pop
fipszip
720010060118465
7214100601105
720030060241520
720050060354689
72093006066276
.........
021989992387
99925819
999261460
9992794
02275999292338
\n

44410 rows × 1 columns

\n
" - }, - "metadata": {}, - "execution_count": 29 - } - ], - "source": [ - "FIPS_BY_ZIP_POP_URL = (\n", - " \"https://www2.census.gov/geo/docs/maps-data/data/rel/zcta_county_rel_10.txt?#\"\n", - ")\n", - "pop_df = pd.read_csv(FIPS_BY_ZIP_POP_URL)\n", - "\n", - "# Create the FIPS column by combining the state and county codes\n", - "pop_df[\"fips\"] = pop_df[\"STATE\"].astype(str).str.zfill(2) + pop_df[\"COUNTY\"].astype(\n", - " str\n", - ").str.zfill(3)\n", - "\n", - "# Create the ZIP column by adding leading zeros to the ZIP\n", - "pop_df[\"zip\"] = pop_df[\"ZCTA5\"].astype(str).str.zfill(5)\n", - "\n", - "# Pare down the dataframe to just the relevant columns: zip, fips, and population\n", - "pop_df = pop_df[[\"zip\", \"fips\", \"POPPT\"]].rename(columns={\"POPPT\": \"pop\"})\n", - "\n", - "pop_df.set_index(\n", - " [\"fips\", \"zip\"], inplace=True\n", - ") # can we do without this and resetting index below?\n", - "pop_df" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "312462997" - }, - "metadata": {}, - "execution_count": 31 - } - ], - "source": [ - "# 2010 Census, corresponds to 308 million population figure\n", - "pop_df[\"pop\"].sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## US Census FIPS <-> ZIP crosswalk versus simplemaps.com\n", - "We're switching to the US Census table for safety. The FIPS to ZIP weights in the two are essentially the same." - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": "326256148\n" - } - ], - "source": [ - "df_census = GeoMapper().load_crosswalk(\"zip\", \"fips\")\n", - "df_simplemaps = pd.read_csv(\"../../data_proc/geomap/uszips.csv\")\n", - "print(df_simplemaps[\"population\"].sum())" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "df_simplemaps[\"county_weights\"] = df_simplemaps[\"county_weights\"].transform(lambda x: list(eval(x).items()))\n", - "df_simplemaps = df_simplemaps.explode(\"county_weights\")\n", - "df_simplemaps[\"county_fips\"] = df_simplemaps[\"county_weights\"].apply(lambda x: x[0])\n", - "df_simplemaps[\"county_weights\"] = df_simplemaps[\"county_weights\"].apply(lambda x: x[1]/100)\n", - "df_simplemaps = df_simplemaps.rename(columns={\"county_fips\": \"fips\"})\n", - "df_simplemaps[\"zip\"] = df_simplemaps[\"zip\"].astype(str).str.zfill(5)\n", - "df_simplemaps[\"fips\"] = df_simplemaps[\"fips\"].astype(str).str.zfill(5)\n", - "df = df_census.merge(df_simplemaps, on=[\"zip\", \"fips\"], how=\"left\")" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "1.1494991956541422e-05" - }, - "metadata": {}, - "execution_count": 62 - } - ], - "source": [ - "df[\"weight\"].sub(df[\"county_weights\"]).abs().mean()" - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "metadata": {}, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": "1.307895680646709e-09" - }, - "metadata": {}, - "execution_count": 68 - } - ], - "source": [ - "1 - df[\"weight\"].corr(df[\"county_weights\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": "113.4559999704361 147.0\n" - } - ], - "source": [ - "df = df.dropna(subset=[\"population\"])\n", - "print(df.groupby(\"zip\")[\"population\"].unique().sum()[0] - df[\"population\"].multiply(df[\"county_weights\"]).sum(),\n", - " df.groupby(\"zip\")[\"population\"].unique().sum()[0] - df[\"population\"].multiply(df[\"weight\"]).sum())" - ] - }, - { - "source": [ - "## We have updated the FIPS to HRR tables since the last version (James' version)\n", - "And they haven't changed by very much." - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df_new = GeoMapper().load_crosswalk(\"fips\", \"hrr\")\n", - "df_old = pd.read_csv(\"https://raw.githubusercontent.com/cmu-delphi/covidcast-indicators/jhu_fix_0824/_delphi_utils_python/delphi_utils/data/fips_hrr_cross.csv?token=AANZ76Q7CUS7REWHRIGNKV27KHH6U\", dtype={\"fips\": str, \"hrr\": str, \"weight\": float})\n", - "df_old[\"fips\"] = df_old[\"fips\"].str.zfill(5)\n", - "df = df_new.groupby([\"hrr\", \"fips\"]).sum().reset_index().merge(df_old, on=[\"fips\", \"hrr\"], how=\"left\")\n", - "df.weight_x.sub(df.weight_y).abs().mean()" - ] - }, - { - "source": [ - "## Adding HHS codes\n", - "These are the department of health and human services region codes. They aggregate states into larger regions. I couldn't find a crosswalk file on the web, so I built one manually below." - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "with open(\"../../data_proc/geomap/hhs.txt\") as f:\n", - " s = f.readlines()\n", - "\n", - "# Process text from https://www.hhs.gov/about/agencies/iea/regional-offices/index.html\n", - "s = [int(st[7:9]) if \"Region\" in st else st for st in s]\n", - "s = [st.strip().split(\", \") if type(st) == str else st for st in s]\n", - "d = {s[i]:s[i+1] for i in range(0, len(s), 2)}\n", - "d = {key:[s.lstrip(' and') for s in d[key]] for key in d}\n", - "\n", - "# Flatten\n", - "d = [[(key,x) for x in d[key]] for key in d]\n", - "d = [x for y in d for x in y]\n", - "\n", - "# Make naming adjustments\n", - "d.remove((2, \"the Virgin Islands\"))\n", - "d.append((2, \"U.S. Virgin Islands\"))\n", - "d.remove((9, \"Commonwealth of the Northern Mariana Islands\"))\n", - "d.append((9, \"Northern Mariana Islands\"))\n", - "\n", - "# Make dataframe\n", - "hhs = pd.DataFrame(d, columns=[\"hhs\", \"state_name\"])\n", - "hhs['hhs'] = hhs['hhs'].astype(str)\n", - "\n", - "ss_df = pd.read_csv(\"state_codes_table.csv\",\n", - " dtype={\"state_code\": str, \"state_name\": str, \"state_id\": str},\n", - ")\n", - "\n", - "ss_df = ss_df.merge(hhs, on=\"state_name\", how=\"left\").dropna()\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.8.5 64-bit ('delphi': venv)", - "language": "python", - "name": "python_defaultSpec_1599600467099" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5-final" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/testing_utils/indicator_validation.template.ipynb b/testing_utils/indicator_validation.template.ipynb deleted file mode 100644 index 8656a82f9..000000000 --- a/testing_utils/indicator_validation.template.ipynb +++ /dev/null @@ -1,247 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Indicator Validation\n", - "This notebook is aimed at assisting developers with tracking large scale indicator changes beyond what can be picked up by the unit tests. While unit tests perform local sanity checks on the operations, the tests here will be more qualitative in nature, comparing the live version of an indicator with the propagating changes.\n", - "\n", - "## Usage\n", - "Since each indicator will have different points of interest, this notebook will only provide a framework to get started. The goal is to support the comparison of the dataframes resulting from the data cleaning and shaping that our indicator code provides." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# Set your base directory (assuming this notebook is run from \"covidcast_indicators/testing_utils/\")\n", - "os.chdir(\"../\")\n", - "\n", - "%run testing_utils/indicator_validation.py" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# The above will likely cause an error due to missing dependencies, run this to fix\n", - "%%capture\n", - "!pip install pandas matplotlib joblib covidcast" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Installation\n", - "Install the utilities and the indicator you plan to test." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "%%capture\n", - "os.chdir(join(ROOT_DIR, \"_delphi_utils_python\"))\n", - "!pip install -e .\n", - "os.chdir(join(ROOT_DIR, \"jhu\"))\n", - "!pip install -e ." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run the indicator\n", - "If you are planning on testing your local receiving directory, you will need to generate those files. You can do that by running the cell below." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "%%capture\n", - "os.chdir(join(ROOT_DIR, \"jhu\"))\n", - "!python -m delphi_jhu" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Qualitative Comparisons\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Loading Data\n", - "To load a local indicator and a remote `covidcast` indicator as dataframes for comparison use the function `load_signal_data(local_signal_dir, remote_signal_name, signal_type, start_day, end_day, geo_type)`. \n", - "\n", - "Separate functions for loading just the local and remote data exist as well. **Note that the local and remote values are cached to disk** to speed up computation and reduce API calls. See function docstring for instructions on clearing the cache." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "local_signal_dir = \"jhu\"\n", - "remote_signal_name = \"usa-facts\" #warning: This indicator has been deprecated\n", - "signal_type = \"confirmed_incidence_prop\"\n", - "start_day = date(2020, 8, 1)\n", - "end_day = date.today()\n", - "geo_type = \"state\"\n", - "\n", - "# load_local_signal_data.clear()\n", - "local_data, remote_data = load_signal_data(local_signal_dir, remote_signal_name, signal_type, start_day, end_day, geo_type)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Comparing Geocode Signals\n", - "A simple plotting demo." - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Total difference: -0.18981468089412878\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAF1CAYAAACAkzWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADUOklEQVR4nOzdd3zb9bX/8ddXsiRbw3vGIztkJ5ABlFX2KFBK1+3e4/bS23E7b/nd7r1v2wsddNOWTkqBlr13AtmBJM6ynXgPDVuSJX1/f3y+X1myJWt5JTnPx4OHEkmWvzEO+K1zPudouq4jhBBCCCGEEEJMF8tsX4AQQgghhBBCiJObBE8hhBBCCCGEENNKgqcQQgghhBBCiGklwVMIIYQQQgghxLSS4CmEEEIIIYQQYlpJ8BRCCCGEEEIIMa0keAohhBBCCCGEmFYSPIUQQgghhBBCTCsJnkIIIYQQQgghppUETyGEEGIKaJrWrGnaXzVN69E0rU/TtB9qmrZY07QHjd/3app2q6Zp5bN9rUIIIcRMk+AphBBCFEjTNCtwJ3AEWAA0An8ANOCrwDxgBdAMfG5WLlIIIYSYRZqu67N9DUIIIcQJTdO0s4E7gAZd1yOTPO864LO6rp8+U9cmhBBCzAVFs30BQgghxEmgGTgyPnRqmlYHfB84D/CgOo0GZv7yhBBCiNklrbZCCCFE4dqAFk3Txr+h+xVAB9boul4KvBnVfiuEEEKcUiR4CiGEEIV7FjgOfE3TNJemacWapp2DqnL6gSFN0xqBj8/mRQohhBCzRYKnEEIIUSBd16PANcAS4CjQDrwe+DxwBjAE3AX8dbauUQghhJhNMlxICCGEEEIIIcS0koqnEEIIIYQQQohpJcFTCCGEEEIIIcS0kuAphBBCCCGEEGJaSfAUQgghhBBCCDGtJHgKIYQQQgghhJhW4xddT6vq6mp9wYIFM/kphRBCCCGEEELMkK1bt/bqul4z/v4ZDZ4LFixgy5YtM/kphRBCCCGEEELMEE3TjqS6X1pthRBCCCGEEEJMKwmeQgghhBBCCCGmlQRPIYQQQgghhBDTakbPeAohhBBCCCHEiWJ0dJT29naCweBsX8qcU1xcTFNTEzabLavnS/AUQgghhBBCiBTa29vxeDwsWLAATdNm+3LmDF3X6evro729nYULF2b1MdJqK4QQQgghhBApBINBqqqqJHSOo2kaVVVVOVWCJXgKIYQQQgghRBoSOlPL9esiwVMIIYQQQgghTmEPP/wwTz755LR+DgmeQgghhBBCCHEC0HWdWCw25a8rwVMIIYQQQgghTmGHDx/mtNNO461vfSurV6/mi1/8Ips2bWLt2rV89rOfjT9n+fLlvP3tb2fZsmW86U1v4v777+ecc85h6dKlPPvsswD09/dz3XXXsXbtWs466yx27NjB4cOHufnmm/nud7/L+vXreeyxx+jp6eHVr341mzZtYtOmTTzxxBMF/zlkqq0QQgghhBBCZPD5f+xmzzHvlL7mynmlfPaaVRmft3//fn71q1/h9Xr585//zLPPPouu61x77bU8+uijtLS0cODAAf70pz/x85//nE2bNvG73/2Oxx9/nDvuuIOvfOUr3H777Xz2s5/l9NNP5/bbb+fBBx/krW99K9u2beP9738/brebj33sYwC88Y1v5CMf+QjnnnsuR48e5fLLL2fv3r0F/VkleAqRi56XoHoZyCFzIYQQQggxQ+bPn89ZZ53Fxz72Me69915OP/10APx+P/v376elpYWFCxeyZs0aAFatWsXFF1+MpmmsWbOGw4cPA/D444/zl7/8BYCLLrqIvr4+vN6JYfr+++9nz5498d97vV78fj9utzvvP4METyGy1XsAfrQZ3vp3WPTy2b4aIYQQQggxg7KpTE4Xl8sFqDOen/70p3nf+96X9Pjhw4dxOBzx31sslvjvLRYLkUgkp88Xi8V4+umnKS4uLvDKx8gZTyGy5Tuubv3ds3sdQgghhBDilHT55Zfz85//HL/fD0BHRwfd3dn/bHreeedx6623AmqgUHV1NaWlpXg8Hnw+X/x5l112GT/4wQ/iv9+2bVvB1y7BU4hshYw2hLB/dq9DCCGEEEKcki677DLe+MY3cvbZZ7NmzRpe85rXJAXGTD73uc+xdetW1q5dy6c+9Sl+9atfAXDNNdfwt7/9LT5c6H//93/ZsmULa9euZeXKldx8880FX7um63rBL5KtjRs36lu2bJmxzyfElNr+B/jb++CyL8HLPjjbVyOEEEIIIabZ3r17WbFixWxfxpyV6uujadpWXdc3jn+uVDyFyFbIeDcpHJjd6xBCCCGEEOIEI8FTiGwFh9SttNoKIYQQQgiREwmeQmRLKp5CCCGEEELkRYKnENmS4CmEEEIIIUReJHgKka34VFsJnkIIIYQQQuRCgqcQ2YpXPOWMpxBCCCGEELmQ4ClEtoJS8RRCCCGEEDPL7XZP6et97nOf41vf+taUvmY2JHgKkS054ymEEEIIIUReJHgKka34GU9ptRVCCCGEEDNL13U+/vGPs3r1atasWcNtt90Wf+zrX/86a9asYd26dXzqU58C4Kc//SmbNm1i3bp1vPrVr2Z4eHi2Lh2Aoln97EIAxKJwfDs0njHbVzI5GS4khBBCCHHq+uenoHPn1L5m/Rq48mtZPfWvf/0r27ZtY/v27fT29rJp0ybOP/98tm3bxt///neeeeYZnE4n/f39AFx//fW85z3vAeDGG2/klltu4YMf/ODUXn8OpOIpZt+Ld8FPL4TBo7N9JenpurTaCiGEEEKIWfP444/zhje8AavVSl1dHRdccAHPPfcc999/P+94xztwOp0AVFZWArBr1y7OO+881qxZw6233sru3btn8/Kl4inmAH+Xug30QnnL7F5LOpEgxCJgc8LoMEQjYJW/PkIIIYQQp4wsK5Nzxdvf/nZuv/121q1bxy9/+UsefvjhWb0eqXiK2WeemZzLlURzoq2nQd2OzuFrFUIIIYQQJ53zzjuP2267jWg0Sk9PD48++iibN2/m0ksv5Re/+EX8DKfZauvz+WhoaGB0dJRbb711Ni8dkIqnmAtOhP2Y5jV6GqC/VYXk4rLZvSYhhBBCCHHKeNWrXsVTTz3FunXr0DSNb3zjG9TX13PFFVewbds2Nm7ciN1u56qrruIrX/kKX/ziFznzzDOpqanhzDPPxOfzzer1a7quz9gn27hxo75ly5YZ+3ziBHH3J+DZH8Orb4E1r5ntq0mtYyv89CJY81rY+Se4YQtUL53tqxJCCCGEENNo7969rFixYrYvY85K9fXRNG2rrusbxz9XWm3F7DOriaHZfRdmUvGKZ726ncvVWSGEEEIIIeYYCZ5i9oVPgGmxia22MLevVQghhBBCiDlGgqeYfSFzuNAcriLGhwuZFU8JnkIIIYQQQmRLgqeYfTkMFwqEIgRHo9N8QSlMqHjO4ZAshBBCCCGmzEzOxDmR5Pp1keApZp8Z4kKZw9w7f/kcN96+a5ovKIUJZzyl4imEEEIIcbIrLi6mr69Pwuc4uq7T19dHcXFx1h8j61TE7Atld8YzFtPZ0T5EKBKbgYsaJzQERSVQXK5+L8FTCCGEEOKk19TURHt7Oz09PbN9KXNOcXExTU1NWT8/Y/DUNK0YeBRwGM//s67rn9U07ZfABcCQ8dS367q+LdcLFiLbM55dviAjo1F6fKEZuKhxQj5weMDuVr+X4CmEEEIIcdKz2WwsXLhwti/jpJBNxTMEXKTrul/TNBvwuKZp/zQe+7iu63+evssTJz1dH5tqm2GdyqEeFfZ6fCF0XUfTtOm+ujFBLxSXQpEdLDYJnkIIIYQQQuQg4xlPXTFLUTbjH2lyFlNjdBh0o3U2Q5g72KseD0djDI2MTveVJTMrngB2lwRPIYQQQgghcpDVcCFN06yapm0DuoH7dF1/xnjoy5qm7dA07buapjmm6yLFSSxxoFCGVttDvWNhr3um222TgqdbgqcQQgghhBA5yCp46roe1XV9PdAEbNY0bTXwaWA5sAmoBD6Z6mM1TXuvpmlbNE3bIodyxQRme63Vnrni2ePH7K6d8XOeIS84StWv7S5ZpyKEEEIIIUQOclqnouv6IPAQcIWu68eNNtwQ8Atgc5qP+Ymu6xt1Xd9YU1NT8AWLk4x5vtNdn3GdyqHeAMvrVfjr9gWn+8qShXzjgqdUPIUQQgghhMhWxuCpaVqNpmnlxq9LgEuBFzVNazDu04DrgFlYrihOeGbY9NSrKmKaHUnhSIy2gRHOXFgJzFbFU854CiGEEEIIkY9spto2AL/SNM2KCqp/1HX9Tk3THtQ0rQbQgG3A+6fvMsVJy2y19dSDHoVIEGwlE57WNjBMNKazprGMYpuFbu8MBk9dV9dZbFY83eDtmLnPL4QQQgghxAkuY/DUdX0HcHqK+y+alisSpxbzrKSnwfh9IGXwPGisUllU46LWU0yPfwaDZzigJu9KxVMIIYQQQoi85HTGU4gpl1jxTPz9OId6VUBdVO2mxuOY2YpnyKtu5YynEEIIIYQQeZHgKWZXPHgmVDxTONQboMplp8xpo9bjmNmKp3mNsk5FCCGEEEKIvEjwFLMr7AfNAq6asd+ncLAnwMJqF4BR8ZzBqbbx4DlunUqaQUhCCCGEEEKIZBI8xewK+cDuGasmpguevWPBs9bjwBuMEByNzsw1BofUbXFC8ESH0ZGZ+fxCCCGEEEKc4CR4itkV8oPDbYQ5Uu7y9AVH6fGFWFgzVvGEGVypMqHV1rhWabcVQgghhBAiKxI8xewK+1Sgc7iN308Mc4d7hwE1WAig1lMMMHPnPFOd8YS01VkhhBBCCCFEMgmeYnaFfCrITRLmDpoTbcdVPGdssm2qqbYgFU8hhBBCCCGyJMFTzK54q+0kwbMngKZBS6UTUGc8YTYrnhI8hRBCCCGEyIUETzG7QkarbZEDNGvKM56HegM0lpdQbLMCUOmyo2nQM1OTbc2qrEV9fmm1FUIIIYQQIjcSPMXsCvvVVFtNU5XPFFXEQ70BFtW4478vslqocs3gLs/g0Fi1E6TiKYQQQgghRI4keIrZZVY8QVUSx1URdV1XwdNYpWKq9Thm8Iynb1zwVC2/EjyFEEIIIYTIjgRPMXt03Qh1RjUzRfDs8YXwhyLxHZ6mGo+D7hlbp+IdGywE0morhBBCCCFEjiR4itkTCYIeHQtydteEM54He1VVcXzwrPU4ZnaPp7TaCiGEEEIIkTcJnmL2jJ8Wm+KM56E0wbPG46DXHyIW06f9MicEz6ISQJPgKYQQQgghRJYkeIrZM2FNycRW20O9AexFFhrLS5Lur/U4iMR0BobD03+dQS8UJ7TaWiyq6inBUwghhBBCiKxI8BSzxwyZ9vRnPA/2BFhY5cJi0ZLur/EUA8zMOc+QL/mMJxjBU854CiGEEEIIkQ0JnmL2TKh4pjrj6Z/QZgtQW+oAmP5znrEYhMe12oJUPIUQQgghhMiBBE8xe8yQaU61HXfGMxKNcbRvmIU1E4NnjVsFz2mveIbNcJyq4inBUwghhBBCiGxI8BSzJzQu1NndEBmBaASA9oERIjF9wg5PUMOFYAYqnuOrsia7G0YleAohhBBCCJENCZ5i9pjVxMQznhAPdOZE20UpKp4uRxEuu5VuX3B6rzHoVbfFUvEUQgghhBAiXxI8xewZ32pr7sc07m/tUbcLq90pP7y2tHgWK54SPIUQQgghhMiWBE8xe0I+QAObETjNcBceq3iWldiocNpSfniN2zH9ZzzHtwOb7BN3jgohhBBCCCFSk+ApZk/YrwKcxfg2NCueRgvuod4AC6tdaJqW8sNrSh30TnvwHFK3sk5FCCGEEEKIvEnwFLMn5E1uYTXPeCZUPFOd7zTNbMVTWm2FEEIIIYTIlwRPMXtC/rHznZB0xnM4HOH4UDDlRFtTbakDfyjCcDgyjdc4SfCMhiESnr7PLYQQQgghxElCgqeYPWarrSl+xtMfn2ibbrAQQK2nGEizUqWvFb63BobaC7vGoBfQkq8TJkzgFUIIIYQQQqQnwVPMnpAvTattYvCcpNV2sl2eXbth8Ki6nYprtIz7qxI/jyrBUwghhBBCiEwkeIrZE/KPC55jrbaHejIHz1ojeKY85xk0hgIFegu8Ru/EwUIgwVMIIYQQQogcSPAUs2dCxXMszB3sDTCvrJgSuzXth5sVz25vcOKDZvAcnorg6Zl4f0J1VgghhBBCCDE5CZ5i9oR9yWcnLVawOSHs52BvgIWTTLQFqHTasVo0evzTWfH0pQmeUvEUQgghhBAiWxI8xezQ9YlTbQHsbvSQn0M9/knbbAEsFo1qt51ub4rgGfKq2+G+wq4z6IViabUVQgghhBCiEBI8xeyIhCA2mnJNSXjYizcYmXSiranWUzxLFc/knaNCCCGEEEKI9CR4itlhno20jwt1DjfDARUaF2VotQV1zjNlxXPKznhmarWVM55CCCGEEEJkIsFTzA6zFXZCxdPNaEA9tihDqy2oybbTW/GUqbZCCCGEEEIUSoKnmB0ho1KY4oxnNOTHZtVoLC/J+DI1Hgd9/hDRmJ78QLziWcAZz2gERodTB0+bBE8hhBBCCCGylTF4appWrGnas5qmbdc0bbemaZ837l+oadozmqYd0DTtNk3T7NN/ueKkEW+1HR88XWhhPy2VToqsmd8XqfU4iOnQFxhX9TSDZ9gPoynWrWTDrMqmGi5kLQKrQ1pthRBCCCGEyEI2Fc8QcJGu6+uA9cAVmqadBXwd+K6u60uAAeBd03aV4uQT8qnb8dVEhxtrZDirwUKQuMszRfC0OdWv8z3nGb/GFGc8QbXbSsVTCCGEEEKIjDIGT10xyzo24x8duAj4s3H/r4DrpuMCxUkqHuqSA2bM5qI4NsziLAYLAdR4igGSz3nGYur1Kxep3+d7zjNj8HRL8BRCCCGEECILWZ3x1DTNqmnaNqAbuA9oBQZ1XY8YT2kHGtN87Hs1TduiadqWnp6eKbhkcVJIE+p8ejFOgiyscmb1MrVGxbMnseIZ8gL6WPDMu+JpDkBK0WoLRsVTWm2FEEIIIYTIJKvgqet6VNf19UATsBlYnu0n0HX9J7qub9R1fWNNTU1+VylOPmnOePaFbVg1ncUV1qxexmy1Tap4muc7qxar20CeA4bStQObpNVWCCGEEEKIrOQ01VbX9UHgIeBsoFzTtCLjoSagY2ovTZzUQqmDZ3dIfUstKNPHf0RKxTYrpcVFdHsTBgiZwbPSCJ5yxlMIIYQQQohZlc1U2xpN08qNX5cAlwJ7UQH0NcbT3gb8fZquUZyMQj4VOi3J34LHhlWls7poNOuXqhm/y9MMnuXNYCnK/4yn+TqpptqCnPEUQgghhBAiS0WZn0ID8CtN06yooPpHXdfv1DRtD/AHTdO+BLwA3DKN1ylONmHfxFUqQFtABU9tNPtAV+spTp5qGw+M5eCsmuaKp5zxFEIIIYQQIpOMwVPX9R3A6SnuP4g67ylE7kK+lIHusFczHs8+0NV4HGxvHxy7Ix48y8BZXcAZTy9o1rG1LONJq60QQgghhBBZyemMpxBTJuSfsEolOBrlSMAInjkEulqPg25vCF03zoWa02iLy8BVYMXT4QFNS/24BE8hhBBCCCGyIsFTzI6wf0Kr7eG+AAG92Hjcl/VL1XgcjIxGCYSj6g6z4ukoNSqehQTPNOc7QV3/6LDaGyqEEEIIIYRIS4KnmB0pQt2hngABStRvcql4lqqVKvHJtsEhsHvAWgSu6vwrnkFv+sFCoCqeoMKnEEIIIYQQIi0JnmJ2hHwTWm0P9gYI6A7j8RzOeLpVlbTbZwwYCg6NBUZntfp9NPspuWPX6E0/WAjGgqe02wohhBBCCDEpCZ5idqQYLnSoN4DTXa5+k8O0WLPi2ZMUPMvUr11V6nY4jwFDaQYgxZmtwjLZVgghhBBCiElJ8BSzI8UZz4M9fpqqy9TuzRzCXI3baLVNFTyd1eo2n3OeIW+GM55S8RRCCCGEECIbEjzFzIuEIBqe0Gp7qDfAolqPCqQ5hLlypw271ZKm4mkEz3zOeWaseErwFEIIIYQQIhsSPMXMM89vJlQTBwJhBoZHWVTtUmEvhzOemqZR43HQ7UsYLjQVFc9gpjOeZqutBE8hhBBCCCEmI8FTzDxzVUpCq+2hPhXeFla7jP2YuZ2brPY4MlQ8czzjGQlBNJTdVFs54ymEEEIIIcSkJHiKmRcygmdCNfFgjxE8a1xGq21uYa7WDJ6xmDqbaQbPkgpAy73imaIqO4G02gohhBBCCJEVCZ5i5sVDXULFs9eP1aLRXOE0Kp65hbkaM3iG/aDHxgKjxQrOytzPeIaGjGucLHhKq60QQgghhBDZkOApZp5ZzbSPVTwP9QZoqXRiL7LkfMYTVMWzLxBmdHhA3WFWPEGd88y54jmxKjuBtNoKIYQQQgiRFQmeYuaFvOp2XKvtwmojyOVxxrPGo1aqDPUbATMxeLqqcz/jmU3wLHKAZpWKpxBCCCGEEBlI8BQzb1yrbSymc7gvMXjmc8azGIDBQSNgJlU8q3KveAaNcDzZcCFNy3n1ixBCCCGEEKciCZ5i5o2rJh73BgmOxpIrnjm22poVz0Cq4OmqzuOMp3mNkwRPyKs6K4QQQgghxKlGgqeYefEznqrieciYaLuoxgieDo9aZRIdzfola43gOezrV3eMP+M53A+xaPbXmKIdOKU8BiEJIYQQQghxqpHgKWZeyAc2p5o4C7QNDAPQUulUj+cxtKfa7TBe2gye5WMPuqoBHUYGcrhGM3hmqng6JXgKIYQQQgiRgQRPMfNCvqRKYpc3CIyd08xnTYm9yEKF00ZkeFDdkXg201mlbnM55xnygcWmBghN+onljKcQQgghhBCZSPA8mQ0cgV1/ne2rmCjsHwuXqOBZ5bKrVSowVvHM45ynPjKoqqlW29gDrmp1m8s5z6BXhVdNm/x5csZTCCGEEEKIjCR4nsy2/Bz+/M6czkrOiAkVzxB1pcVjj5uP5VhJrPUUqxbZxPOdoM54Qu4Vz0znO0HOeAohhBBCCJEFCZ4ns+E+QIdAz2xfSbKQf0KrbV1pQktr/IynL6eXrfE4KAr7JgbPfCqeEjyFEEIIIYSYMhI8T2bmMB1/9+xex3hh37hW23EVzzzOeIKabOuI+NAnVDzNM5592b9YyAuOsszPkzOeQgghhBBCZCTB82Q2Mqhu51zFc6yaOBqN0RcIUZsqeOZxxtNNgIhtXKXSalNV0Jwqnt4cKp5+0PWcrlUIIYQQQohTiQTPk9lcrXiG/OBQ4bLHF0LXoT7pjKdZ8cw9eJYyTNDqnvigszq3M57BHIKnHoVIKPvXFkIIIYQQ4hQjwfNkFg+eXbN7HeMlVDzNVSqpz3jmFjxrPcWUagECmmvig67q3M94Fifv8BwOR/j0X3fQ40sImXm2BQshhBBCCHEqkeB5MgsOqtu51GobHYVoCOxm8FQhLumMp80MnrmFuRq3nVKG8eKc+KCzOvsznrqecrjQEwf6+P2zbTyyL+HrmWdIFkIIIYQQ4lQiwfNkNRqE0WH167nUahsyJtUa7bRmxbM2seJpsajwmeMZz9qSKEVajIFoiuDpqsq+4hkJQmx0QvDc3jYIQPvA8Nid9vxCshBCCCGEEKcSCZ4nK7PaCRCYi8FzrNXWatGodjmSn+dw51xF9Ogq/PVFSyY+6KxW62WyGQIUv8bkVtvt7YMAtA+MjN0prbZCCCGEEEJkJMHzZGWe79Ssc6viaYZJu1nxDFHrcWCxaMnPM6fF5kALeQHoDjsmPuiqhlgkOZCnkyJ4xmJ6hoqntNoKIYQQQgiRjgTPk5UZPCsWzK3gOa7i2e0LJq9SMeWzHzM4BEBnquDprFa32ZzzNF4ncbjQ4b4A3mAEe5FlXMVTWm2FEEIIIYTIRILnycoMnjWnwUi/GuozF5jnNo3g2TkUpM6TIija3Tmf8TQDY8ewbeJjrip1m805z3HhGMbabC9YVsPxoSCRaGzsOmHsPK0QQgghhBBiAgmeJ6vE4Am57bCcTmEj1NnHhgvVl6WoeOZxxtMMnkdHUgTPeMUzz+DZNoTTbuXlp9UQjel0GkORpNVWCCGEEEKIzCR4nqzM4FltBM+5ssszIdSNhKN4g5HkVSome/7Bs2PEQSgSTX7MZQTPrCqeXuMax1ptt7UNsqaxjPmVKmjG222l1VYIIYQQQoiMJHierEYG1GChykXq93Nll2e81dZNt89YpZKy1daV9xlPHyX0+sPJj+VV8VTBMxyJseeYl/XN5TRVqIm58eBpM1a3SPAUQgghhBAiLQmeJ6uRASipAHet+v1cGTBkhjq7h84hFTxTVjwdnrzOeEatDkLY6TZbYU22YlVFHc5muJBZ8VStti92eglHY6xrLqehvBhNS5hsa7Gq8CmttkIIIYQQQqSVMXhqmtasadpDmqbt0TRtt6ZpHzLu/5ymaR2apm0z/rlq+i9XZG188JwruzzDPigqAWsRXb4QQOoznuY6lWz2bpqCQ8TsqkrZY7x2EmdVlhVPLxQVQ5EdIL5GZV1zOY4iK3We4omTbWeg4rm/y8cd249N++cRQgghhBBiqhVl8ZwI8F+6rj+vaZoH2Kpp2n3GY9/Vdf1b03d5Im9m8LS7VKVvzlQ8/WpwEMSrknWeNGc80dW0WPMcZSbBIbSSchiA7lTB01Wd/VTbhMFC29qGqHY7mGcE5KaKkom7PGcgeP78icP8ZWs7V69pmLj3VAghhBBCiDksY8VT1/Xjuq4/b/zaB+wFGqf7wkSBzOAJ4KqZQ8FzLNR1eYM4iiyUlqR4/yOfoT3BIawlZWhamuDprM6+4pkwWGh7+yDrm8vQNBX2VPBMrHjmsXM0D73+EOFojB5/ij+bEEIIIYQQc1hOZzw1TVsAnA48Y9x1g6ZpOzRN+7mmaRVpPua9mqZt0TRtS0/PHBlwMxcdehSe+tHUvV5i8HTXzqFWW398lUqnN0R9WXE80CUxK47mmdBsBIfQisuoctlTt9q6qrM745kQjr3BUVp7/KxrKo8/3FThpDNpl6drRs549hmBs61fdoYKIYQQQogTS9bBU9M0N/AX4MO6rnuBm4DFwHrgOPDtVB+n6/pPdF3fqOv6xpqamsKv+GT1/K/h4a9N3euNDCYHT/8cCf0hX7ya2OUNpm6zhfwqniEvFJdR4ymmxxec+Lh5xjPTudGE4LmrfQhdV+c7TU0VJURievyM6ky12pqTepOqrUIIIYQQQpwAsgqemqbZUKHzVl3X/wqg63qXrutRXddjwE+BzdN3macAf5cKTpEpaKOMjqrXirfa1s6tPZ4JZzxrS1OsUoF4VTSnSmJwyAiejvQVz2go82sGVYAF2NY+CMDaprL4w00VaoVKu1l5nKHgaVY8k86XCiGEEEIIcQLIZqqtBtwC7NV1/TsJ9zckPO1VwK6pv7xTiHkGM5tW0EyMfZZJFc+RfhVIZ5vRaqvrOl3eUOpVKpAQPLMMdLoeD561Hkf6M56Q+ZxnQsVze9sgC6tdlDvt8YcbJ+zynP5W25FwlEA4mvx5hRBCCCGEOEFkU/E8B3gLcNG41Snf0DRtp6ZpO4ALgY9M54We9Mzgmc3wm0xGBtRt4nChqXrtQhmhzhuMMDIapT5d8DSqolmf8YwEIRqOVzx7/SFisXEttS4jeGYK96GhhOA5xLqEaifAvHJ1zfEAOAMVz96EgUISPIUQQgghxIkm4zoVXdcfB1Ltbrh76i/nFBUJq4okTE3Fc3zwdNepW38XlDak/piZYqxTMVeppG+1zfGMp1nlLS6j1uJgNKozODJKpWusUplVxVPX4+dQO4eCdHqDSec7AbXLs9Qx1vI6g8HT4yiiTVpthRBCCCHECSanqbZimgQSBv9MS/Csnfh5ZkM0ApERcJTS5VVBKnOrbZYtrAnBs8ajwuyEc56uKnU72S7P0WHQY+DwsN043zk+eII65zlW8XQbFddIdteahz5jsNC65nKODY4QHV/NFUIIIYQQYg6T4DkXJK46mdJW23J1a7bazvYuz7DRNmt302VUPDMGz1DuwbPWmJTbPX6ybTYVz6DXeJ1StrcNUmTRWNlQOuFpTRUltA8mVDwBRqev6mlWPNc1lzEa1Sf+2YQQQgghhJjDJHjOBYmBcFornrMcPM0Q6XDTGQ+eaVpti+xgtedQ8TQD4yQVT7sLioonr3iaZ0odpWxvH2RFQynFNuuEpzVVlHB80Njlmc/qlxz1BVTFc32z+ncq5zyFEEIIIcSJRILnXJC46mSyUJStkQFAi68Ewe5SFcTZrnjGQ52Hbm8QT3ERTvskx4ztOUyLDQ6qW2OqLTBxsq2mqapnYJJwb1xjzOZmR9sQ65rLUj6tqcI5tssz1wm8eejxhfA4ilhco0KurFQRQgghhBAnEgmec4EZPMvnT1Gr7aAKnZaESp2rZvaDpxki7Z7JV6mY7J68hgu5HEW47NY0uzyrMlQ81escC9nxhSKsaypP+bQmc6VK/3BCxXP6Vqr0BcJUexzMK1eft61fKp5CCCGEEOLEIcFzLvD3gKMMShthuL/w1xsZGGuzNblr50CrrdEO6/DQ5Qumb7M12V3Zr1NJCJ4ANZPt8pws3Bufb2+/Gt6zPsVgIVAVTzBaXmeg1bbXF6LKZafYZqXW45CKpxBCCCGEOKFI8JwL/F0qGGaqxmUrVfB01aiAO5sSznh2DQUzVzwd7twqnla7OsMJ1HqK6Uk1gMdVPfnX2DgrurMnhttRxKIad8qnmbs8OwZHZqTVti8QotqtgnpTRYmc8RRCCCGEECcUCZ5zgb9b7dp0Vk3dVFtzoq3JXZd8lnQ2GK2oMZuLbl82rba5nPEcAkepOsdJpopn5jOeWzojrGksw2pJtcJ23C7PGWi17fWHqXKrnaTNlU4JnkIIIYQQ4oQiwXMuCHSriqezGkb6IRYr7PXStdqO9EN0tLDXLoQR6gaixURiOnWeTK22OVQ8Q96xYUqo4Jn2jOdoAEbTBDfjGp/viqTc35kovstzmlttI9EYA8NhqhIqnrLLUwghhBBCnEgkeM4FfiN4uqpBj41NaM1XulZbmJqKar6MVtvOkJpkm7ni6c5tj+e44OkLRgiORpOfl2mXZ8hLtKiEYNTC+jQTbU3xltdpDp79w2F0HWqMiqc5UddcSVOQSAi8xwp/HSGEEEIIISYhwXO2hYdVtc5dq1ptobBwGDOCa6qKJ8zugKGQF6wOuvwqDNaVZXPGM7/gGV+p4h1X9XQZwTPdOc+Ql5BVndnMVPFsLDcqj7bpbbXt86sdnokVTzAm6hbCexx+dgn8cLMKoEIIIYQQQkwTCZ6zzQyC5hlPgOFJziBmEvKqqumE4FmnbmdzpUrYrybaGmEwq4pnnsGzoUyFs50dQ8nPi1c803yNQz58egm1Hgf1Ga4vvsszEAOLbdoqnr1+9fUaGy6UMFE3X5074WcXQ+cOCPvA21HwdQohhBBCCJGOBM/ZZk6addVmrsZlY2RA3aZrtZ3N4Bnyq4m2RotojTuLM57RMETCmV97XPA8c1Eli6pdfPf+fUSiCWdmM32Ng176Iw7WNZejaakHC5nilUez3XaagudYxVO12s4rL0bTCgie++6Fn1+hfn3Zl9XtUHuhlymEEEIIIURaEjxnmzlpdqpabdMFzznRauuLVzyrXHbsRRm+/RzmmpIsqp7jgqfNauETV5zGgW4/f3k+IVRl+BpHRrz0jjrS7u9MNBY8h3MbhJSj8RVPR5GVOk8xbfns8nzmJ/D710PVYnj3A7DMCKBDUvEUQgghhBDTR4LnbIsHz7qxNtBCWm3TBU+7C2yu2d3lGfaD3UOXN4sdnpD90J5ICCJBKC5NuvvyVfWc3lLOd+7bx0jYGDJUXKbaYtNUPEOBQfyUsK6pPOPlzSufmYpnrz+M3WqhtLgofp8abJRD8IxF4Z+fhH9+XIXNd/wTShugrFE9LhVPIYQQQggxjSR4zraA2WpbDbZiVTmbjuAJquo5m7s8Q754q21daYY2W1BfC8hc8Qx61W1xedLdmqbx6StX0OUN8fMnDpl3TrovNRb04tOdrGmafKItQLHNSq0nYZfnNFY8q9z2pNbf+ETdbIT88Ic3wjM3w1n/Aa//7Viot5Wor4dXgqcQQgghhJg+Ejxnm79L/eBvtanfOyunp9UWVPCcI6222VU8zeCZIdAFjQFCxRPD4uaFlVyyopabH25lIGCcFXVVpw331rAfa0kpZSW2zNfHuJUq03bGMxQ/3zn2eZ0cHwomn19NxXsMfnEl7L8XXvFtuOIrYLEmP6esSSqeQgghhBBiWknwnG3+7rGJs6DabQuqeA6q23HVP0ANGJrlVtuYzU1fIERtNsHTPOMZ8k3+vEmCJ8AnrlhOIBzhhw8dUHekqXjqsSjF+jCeshShPY2mCqcRPHOYwJujXn84fr7T1FxZQjSmc3xokl2ex3fATy+G/oPwxj/Cpnenfl5pk5zxFEIIIYQQ00qC52zzd48N/gGjGldgxdPuhiL7xMfmQMVzWCtB18m4qgTI/oxncFDdpgmey+o8vGZDE7956ght/cNpv8ZdvX1Y0KmorM58bYamihKOD40Qm+6Kpys5eGZcqbLvHjW5VrPAO++BpZem/wRS8RRCCCGEENNMguds83epVSomZ1X6HZPZGBlI3WYLqrI63AfR0fxfP1+xKIwO49NV4JzaM56TVzwBPnLpMjQNvnPfPlVVTvE13ntYVf3qamonPJZOU4WT0ahOkOJpCZ66rquKp2d8q23CRN3xwsPwx7dC9RJ4zwNQv3ryT1LWpHZ5Bocmf54QQgghhBB5kuA5m3R9YsXTWVX4cKGS8tSPmbs8CzlDmi8jPA5FzeCZyxnPwoNnQ1kJ7zx3Ibdv66A75obQ0IT9oK1tx9Vz62oyX5vBDIDemGNagqcvFCEcjVE9ruLZUFaSfpdnf6ua8nvOh8FTn/mTyGRbIYQQQggxzSR4zqaQDyIjyWc8XdXqvnxDzKQVz1nc5Wmc0+yPqgCVVfCMn/HMMng6Sid92vsvWExZiY27Wo2K77iAf/R4JwC2dME9BTN4DkZsKiDretYfm41en7HDc1zF015koaG0OHXw7DPOslYvze6TlDWrWznnKYQQQgghpokEz9lkrlIZX/GE/KuSkwVPs6V3NgYMGeGxN2TDatGocqU4gzqezQlomUN4yAuadexMaBplJTZuuHAJz3QZ3/YJ5zyjMZ2uHuPr4vBkvjaDucuzL1wE6DCa5YqTLPUZk3jHn/EE1ebblqrVttcInpWLsvskpWbFsy2fSxRCCCGEECIjCZ6zydypmRQ8jcE2+bbbZlPxnI1dnkbFsytkp9bjwGLRMnwAaudmNtNig0OqzVbL/JpvOXs+Frf6Gsf8Y8HzYI+folHj8xRPXjlNVGyzUuNx0BMy1q9McbttvOLpThU8S+hIV/EsbcoYxOM89Sq4e6XiKYQQQgghpocEz9kUD57jWm0hv+Cp63O31TasgmdnqCi7VSomuyv74JkFR5GVV52zFoAXXjwQv39b2yBuzQhxOVQ8QQXAzqCxG3OKV6r0GhXPavfECrE5UXd0/C7Pvv1QtTj7T2KxQuk8OeMphBBCCCGmjQTP2WS2vCbt8Syg1TYcgNho+uBpd4HNNautth3DVuqzmWhrcrizO+OZZfAEuHjDKgAe3/4i4YgKbdvbB6kuMnZi5hw8nXQMG3+Vprji2edXFc/KFK3JTRVOYjp0Ju7y1HVV8axaktsnkpUqQgghhBBiGknwnE3+LtXiWFI5dp8ZPPOpeJr7LNMFTwB3zay22h7xW7MbLGTKZj9mjsHT4qxE1yxoI73c+swRALa3DbGo1Kgc2nOveLYHpid49vpDVDhtFFkn/lVtqlTnS5POeQ73qa9HtoOFTKWNEjyFEEIIIcS0keA5m/xdasWJJeFfQ3EZWIqSBt9kbWRA3U4aPOtmqdVWVS07g0U5Bk9Plq222Z/LxGKBkkpWlob5wYMH6PWH2HvcS4srqj6fJbe/Fk0VJXiNab1T3Wrb5w+nPN8J0FzhBKC9P+GcZ+9+dZtPxdN7DGKxzM8VQgghhBAiRxI8Z9P4HZ6gBuQ4q/Jrtc0meLpqZqnV1gtAgBJqPTm02mZ1xtObU8UTQHNVs6k2Rn8gzEdu20YkptNQHM4twBqaKpwMY4Tpaah4VqU43wlQX1aMRYP2xIqnuUoln+AZG52dNyWEEEIIIcRJT4LnbAqkCJ6gJtvm02prBs/i8vTPcdfO0h5PPzGLnTA26styqHhmfcazPLfrcVZTFvNy9doGHtuvQn51UTjn852gKp6BaQqek1U8bVYLDWUlybs8+/aDxQblLbl9orImdSvttkIIIYQQYhpI8JxN/u7kwUImV1VhwXPSimeteu3oaO6vX4iwn9Ei1Ro6pWc8o6MwGsi54qm+xr18/PLTsFk16kodFMf8eQXPxvIShnUzeE5tq22PP5Q2eAI0VowPnq1qf6fFmtsniu/ylOAphBBCCCGmXtFsX8ApS9dTt9qCqnge3577a2Z1xtNcqdILpQ25f458hXyELGqvZJ1nCs94BlULb87B01kNgV7mV7m48RUr0XUd9vhyr5yidnmWuEshwpRWPEORKL5gJOUqFVNzhZMnWxPasnv35z5YCKTiKYQQQgghppVUPGfLyIA6U+dKFTyr8h8uZHWATU07HY3GaB8YVqHKNFu7PEN+RrQSHEUWSktyeL/DrHimG3pjTvLNueJZbfw7iPK2ly3g7ecsVJN386h4AtRUlBFDm9Lg2edXOzyrJql4NlWU0OkNqrUwsSj0H8xth6eppEKt2vF25Hu5QgghhBBCpCUVz9niN4Jfqoqnq1qdW4yOgtWW/WuODKgAoWkA/PiRVr517z7qSh2cs7iac5ZU83JnOVUw8wOGQl78lFBfVoxmXF9WHG5Ah9Fh49fjBIfUbT4VT3QY7lcrZkBVT/MMno2VboI9DpzTEDwna7VtqihB1+H40AjztW71ZkZVHhVPTYOyRhhqy/dyhRBCCCGESCtjxVPTtGZN0x7SNG2Ppmm7NU37kHF/paZp92matt+4naS/U0xg7tJMdcYzvsuzP7fXNIOn4ZlD/TSWl7BpQSUP7+vhv/60nVf9Wq3b+NtjW7lndydDIzN01jPsZyhWnFubLaiKp/HxKZnB05HjNFqX+TVOqCyHfLkHWENTRQl+vRh9Cs949vpDAGmn2qrPa6xUGRjJf6KtqawJhqTiKYQQQgghpl42Fc8I8F+6rj+vaZoH2Kpp2n3A24EHdF3/mqZpnwI+BXxy+i71JBOveE4WPHvBk+LxdEYG48FT13V2dgxxxap6vvbqtcRiOi92+njmxaPwKBw8fJgf7NuKRYM1TeWcu6SK9563mDJnDhXWXIT8DEZqqS3NYZUKqDOekL6FNVTAGU8YW1sTi6ohRXlWPJsqSgjoDjwBLyV5vcJEZvCsdqX/mjVXqs/WPjAMUSN45nPGE9SAoc5d+X2sEEIIIYQQk8hY8dR1/biu688bv/YBe4FG4JXAr4yn/Qq4bpqu8eRknrE02zwTuYxQlOtk24SKZ/vACIPDo6xpUoHMYtFYOa+Ud1y0GmwuPnx2OX9839nccNFSbBaNmx5u5Zv3vpjvnyYjPeSjb9SR20RbGGuvDflSP55vq238a2wETzPA5h081S7P0LA3r49PpddstfWkr3jWlxZjtWi09Y+owULFZWNvXOSqrFl9X0ZC+X28EEIIIYQQaeQ0XEjTtAXA6cAzQJ2u68eNhzqBHEpzAn8XWO2pp6iOr8ZlKyF47mhXgWxtY4rXd9dgHe5h88JKPnrpMv787y/jgmU1PHkgjxUu2Qr7GIo5qM81eMZbbdNUPAs648nY19gMtrm27Boay9Uuz9GRqWu17fOHKLFZcdrTNyYUWS00lBWrimffAdVmm8sZ2kRlxkoVGTAkhBBCCCGmWNbBU9M0N/AX4MO6rieVdXQ1NlVP83Hv1TRti6ZpW3p6ZnigzSzTdZ1bnzmCN5jiHKW5wzNVSIi32uZT8SwHYEfHIHarhWX1KQbyuGrHzpgazl5cxcHeAF3eYG6fMxuxGFo4gJ+SAlptJznjqVnAnuLPORlnpbo1v8bBQiueapdnLF1lNg+9/tCk1c7Ezx0/45nPYCFTfKXKiR08D/UGaOsfnu3LmPMe2NtF93T8fRdCCCGESCGr4Klpmg0VOm/Vdf2vxt1dmqY1GI83ACn3c+i6/hNd1zfqur6xpiZFW+lJbPcxL5/52y5uezbFpFB/N7jSfD3Gh6JsjAbV5Fej4rmzfYjlDR4cRdaJz3XXTphqe/YiVQF8qnUaqp5GaPTrJbm32mYzXMhRCpYcNwNZbaraPL7iWZxfxbPYZiVS5JzadSqBMFWTnO80NVU46e0fUJXKfAcLAZSeHLs8P/rHbXz4tm2zfRlzWigS5T2/3sItTxya7UsRQgghxCkim6m2GnALsFfX9e8kPHQH8Dbj128D/j71l3dia+1RYem5wymm05oVz1TGh6JsmPssSyrig4XWNKZpP3XXTtjjuXJeKaXFRdMaPAMUF3DGc5LgmeckWlzVCWc8C2u1BdDsLqyRqau09fhCk65SMTVXOHEGjqjfVBcQPOOttid28GzrH+aFowMzN7H5BNTrDxPT4WifVIaFEEIIMTOyKROdA7wFuEjTtG3GP1cBXwMu1TRtP3CJ8XuR4EC3CktbjgygupET+LtS7/A0OauSV31kMjKgbksqONI3jC8YSR88XbVqVUt07Adzq0Vj88Iqnjo4DcHTCHWq4plrq22mM57evKuUOKsTKp6FtdoCFJV4sEdH8v748foCYaonWaViaqooYSHGcetCKp62EvV9dwJXPMORWDxUTcubKCeJXp8aIHVUWpKFEEIIMUOymWr7uK7rmq7ra3VdX2/8c7eu6326rl+s6/pSXdcv0XU9x6WTJz+z4tkfCNPakxCcYlEVKtNVPMGoxuXwg3NC8NzRoQbumBNtJ3DXAPqEiurZi6s42j9Mx+DUhScgXq2M2t2TDspJyTy7OVmrbaoBTdlI/BrHg2f+FU97iYdiPUgslvK4c05iMZ3+QDirimdTRQkLNSN4Vi4u7BOf4Ls8u31jZxYfP3BqnSnPRY8ZPPuGJ74pJoQQQggxDXI8GCdycaDbz6IaVbHbkthuO9wHeixDxbMaAvkFz53tg9iLLCyrS1O9MwPvuHbbsxepoUZPT3WlyAh1dmceLbFWG1gdGYJnnq22zqoUU23zr3iWuEuxaxF6hgofMDQ4Mko0plOVTcWz0skiy3ECxfVgdxb2icuaT+iKpzkcy+0o4onpnNJ8gusxdsT6QhEGh6UlWQghhBDTT4LnNIlEYxzuHebSFXVUuew8d3hg7EFzouykwbMy71bbHe1DrGwoxWZN86/XZXzecQOGltd7qHDaJm+3bXsW/vAmiISzvzYjNDrdeQZEh3saz3j2QSymWnY1y1hrbz4v51HXcbyn8MDTawSDbCqe9aXFLNKO0+toLvjzUtp4Qq9T6RxSX7dXrGngUG9ArZkRE5gVT5B2WyGEEELMDAme06RtYIRwNMbiWjcbF1QkDxiKB88sWm2zbYMzgmesuJxdHUOsTddmC0arLRMqnhaLxpkLqyY/G7f99/DindC5M7vrgnhodJWWZ/8xieyuyfd45l3xrAY9qgYzhXyq2pnvDkygtFRNFO7qnbrgmU3F06rBYstxjmqNBX9eyppUhdrcj3qCOT6k2sRfs1FN6H18f467cE8REjyFEEIIMdMkeE6TVmOw0JJaN5sWVHK0f3hsR6ZZaUy3TgVUKIpFsg8AIwOgWTnotRAIR9MPFoKEimfXhIfOXlxFx+BI+j2Ibc+q244t2V0XEDN2ZHrKKrP+mCR2T+pW22gEwr7CKp6gAn7IW9D5ToCKcnUdff0DGZ6ZWa9fVZRrsqh4EujFwzD7IpNU0LNlTrY9Qdttu7xBHEUWNs6voK7UwWMHJHim0usP0VheAkjwFEIIIcTMkOA5TQ4Yg4UW17jZuEAFri1mu202FU+nOm+Z9YChkQEoqWDXMRXy0g4WAtW6anNNaLUFOMs455my6hn0Qtdu9ev27IPnSECF54qyiqw/JondlTp4mgOBCjnjCeqcZ8hXcPC0l6iPHxgsfM5WX7zimUXw7DsAwPaRqQieRrvuCTpgqNMbor6sGE3TOGdJNU8e6J2SYU8nmx5fiPlVTqrdjvRvMgkhhBBCTCEJntOktdtPjcdBWYmNVfNKKbFZx9pt/d0q+Jk7KlNJrMZlwwieO9qHKLZZWFIzyWuDarcd12oLsKzOTZXLnvqcZ8cWQFeBLYeK57BvgLBupaYiz2CX7oxnoZNo41/jXqPimf9gISB+PnRoaLCw10FVpKwWjfISW+Yn9+0H4IXhKoKj0cI+calZ8Wwr7HVmSddQML4r9ryl1QwMj7LbeDNGjOnxqx2xLZUlHJFdnkIIIYSYARI8p8mBHj+LjYm2NquF01vKx4JnoHvsnGU6idW4bIwMqom2HYOsmldGUbrBQiZXrQrA42iaxlmL1DnPCWsWjj6jBvBseDv0H8x66m4oMESAEmrLSrL7s4yX7oyn2YZcyBlPUF/j4NQFT7+v8PORff4wlS47FksWZ077DhC12OjQawpfheOpB816wg4Y6vQGqTeC5zlL1L/fx2StygQ9vhA1HgctlU5ptRVCCCHEjJDgaTjcG+D/3b6Lo1Pw7r+u6xzo9rOkdqzquHFBJXuPe/EFR1Wr7WRttpDQaptt8BxAL6lgV4d38vOdJnfq4Alw1uIqOr1BDo//WrQ9A7WrYNGF6vcdW7O6tNFhHwGK45WonKU741lo8EyqePqguLBWW3Pn6IjfW3B7Z69RkcruyQcIly4ghoX2gQKDp8UKpfNOyDOeuq7T6Q3SUKa+z2o9xSyv9/CEnPNMEghFGA5H48Hz+NAI4Uhsti9LCCGEECc5CZ6GYCTKb54+wvNHCx8M0+MP4QtGWJzQ7rp5QSUxHZ4/OqgC32SrVCCvVluf5mJkNDr5RFuTuzZlqy2M7fNMOucZi6pznc2bYd7pqvKZZbttdMSLTy/JblBOKunOeBYaPIscKtQG+sam2hbCqHg69JH4nsR89frDVGcx0RaAvgNoVUsApmZ9SFnTCXnGc2B4lHAklvQGx7lLqnnu8EDhLcgnEXNico3bQXOlk5gOxwqtlAshhBBCZCDB07Ckxo2jyMLuY4W3SR5ImGhrWt9SjtWiseVwf3YVT7sLikpyarXtGnUCZBc8XbUw3A/RicvjF9e4qPE4ks95du9VE2Sbz1RnLmtWZD9gKOwjbHFiL8rz2y3dGc9CgyeAq2rKz3i6CBYcALOueEYj0H8Qe91p2Kxa4RVPUOc8T8Aznp1Damp0fVlC8FxaTTgS49lDhQ98OlmYq1SqPQ7mV6nvWWm3FUIIIcR0k+BpKLJaWF7vYVdH4YNIWnvUecTEiqfbUcTKhlKeP9SlBgG5sphA6qzKruIZjUBoiPagA5fdysLqDIOFwDhjqqcMtpqmcfaiKp4+mHDOs+1pddu8Wd02bVCttlnsGbWE/YwWZXFN6dhdEBuFSDj5/qkIns5q8HVCJAiOAl4H4sHTSbDgANjnD1PlyqLiOXQUYqNYqpcwr7xkaoJnWRN4j0HsxGq/NNcVJVY8Ny+sxG618Li028aZwbPGrVptQYKnEEIIIaafBM8EqxrL2H1saOJQnRy1dvtx2a3xs2amTQsqaW8/qn6TqdUWjGpcFsHTCGCtPhur5pVhzWYgjRl807XbLq6ixxeKh2janlVV2ooF6vdNmyA4CH2tGT+VLRIgZoSyvNiNSuT4dtvgEKAVtgbFVQ39h9SvC614Wm3oVgcuLVRQAAyEIoyMRqn2ZLNKxfj6Vy+lucI5NasxyppU0E/zvTFXdXonVjyd9iLOmF/OY/sleJrMNvAaj4NajwN7kUWCpxBCCCGmnQTPBKvmleINRgquGrX2+Flc60bTkgPgpgUVlEaMM6SZWm1BVeOyabUdUa/54lDR5Ps7E5mfP8UuT0g452m227Y9o6qd5p+pcaO6bX8u46eyx4bRCgl1ZmidEDyN9lhLAd/GzuqxCa6FBk9As7uotIUL+h7q86vKblYVz161SoWqJTRVTGHFE064c57Hh4JoGtSOC+znLa1h73FvvNJ3quv1hbBoxKcmN1eUTMlQNSGEEEKIyUjwTLBqngpthZ7zPNDtT2qzNW1YUEG1Zrx2VhXP6uym2hrBszfqzO58J4ytc0lT1Zpf5aShrJinW/vA1wUDh9X5TlPNaWqKa4YBQ6PRGE59BGshE2PNfafjz3kGhwprswVVVcaocBc61RbA7qbaHinojGdvYOwMXkZ9B9TXwFlFU0UJvf5Q4YN04sHzxDrn2TUUpNrtwDZuldC5xlqVJ1ul6gmq4lnldsQ7I2SlihBCCCFmggTPBMvrPVgtWkEL5/2hCMeHgkmDhUy1nmJWuI0f8LIJns4qNQAoEyN4Duru7FapwFirrb8r5cNJ5zzj5zvPGnuCxaqm22YYMNTjHcFFEJuzgFBnrCmZsMtzKoKnucsTpqTiid1FhS1MRwGVx15z+Isrm+C5H6qWgqbRVKHO6xVc9SxtVLcn2C7PxB2eiVY3llFWYuNxabcF1BnPxMFVLZWqRbvQIwZCCCGEEJOR4Jmg2GZlSY2bXR35VzwP9qiq3OKa1Gca15SrUBFz1mR+MWeVai8dDU7+PCN4jtrLWFCV5VlKhxtszrSttqD2efYFwgy89ARYHdCwNvkJTRuhaxeMpg86Pf39WDSdYnd5dteVSjx4+pLvn5KKZ2LwnIqKp4sya5j2wZG8d3n2BVSrbbUni1bbvlYwVqk0V5YAU7BSpaQCbK4TbpdnlzeYcles1aJxzpIqHj/QK+EKFTxrEqrpLVUufKEIg8MTJ1wLIYQQQkwVCZ7jrJpXWlDFs7Vn4iqVREtKhvHqTg4ORjK/WHyXZ4ZKjRE85zXMw5LNYCHTJLs8YeycZ+TwU6q6WTSuAte0CWIROL4j7Wv096uKrdNTQEB0zFTFc2qCp1sLEY7E4vsSc2VWPCsznfEMB1RVsloFT7Pi2VZoxVPToKwx7+DpDY5y7+7Owq4hD53eIPVlqavE5y6p4fhQcGxY1imsxxdK2qkrk22FEEIIMRMkeI6zqrGMbl+Ibl+GKmMaB7r9WC0aLZWpK48NRV569DKeOzyQ+cWcKvhlmmwbDahwt6h5Xk7XiqsW/OmDZ3Olk4VlViqG9o6tUUmUxYChoSH15/SUVuR2bYnM4ULTdsbTMCWttm6cqO+dfANgXyBMaXERjiJrhicaE22NimeN24Hdaim84gnqnGeewfP/3b6L9/5ma/xNmJkQHI0yODxKQ1lJysfPW6reYHh8f/oK/6lA13V6/eHkiqcRPI9I8BRCCCHENJLgOc6qearqlW/Vs7U7wPwqJ/ai1F9a12gfg5YKnstmob1Zjcsw2Xawv4sh3cnqpsrcLtY9efAEePW8XmyMEkscLGTy1EFZ86QDhryD6s/pLih4plmnEpriiueUDBdy4YipwJlvAOzxJ5/BS6vvgLqtWgqAxaLRmONk2+ePDvD1f71IJDpuZ2dpY15nPJ880Mvftx0DYOuRLN5cmSKdQxN3eCZqrnTSUuk85fd5ekcihKOxpOBptmhPySoeIYQQQog0JHiOs9IInnvyDJ4HelJPtDVp/m5i7jqeO5JF8Iy32k5e8fQN9DCou7OfaBt//ZqMuxovKD4IwD77itRPaNwA7VvTfnzANwiApXiK16nEYsY6lQLDovk1thRBUerQkhO7i6KI+gE+3yE/fbkGz8pF8btyWanSORTkPb/awk0Pt/LjRw8mP1jWrAZPRbJvFw5Fotz49120VDopLS7ihaMzGDzNHZ5pgifAuUurefpgP6PjQ/YppMevvk7V7rE2bqe9iGq3Q1aqCCGEEGJaSfAcp7TYxvwqZ14DhkajMY70BdKe7wQg0ENJeT1t/SPxKk1aZqtthopnyNeHz+KJt8xlzV2npuZG0583XRLew6FYHU8cT/Ot0rQRho6mrZyG/IPqF4W0sdpKQLMkn/EM+wC98Iqn3QVFJer6tBzOx07yetpogCqXPe/g2esPU+XOZrDQAShtAvvYv/emCiftWVSuItEYH/z984yMRjl7URXfu38fL3YmvNlSZk62PZb1df/ssUMc7Anw+Veu4vSWihmteHaZwTPNGU+A85ZU4w9F2NY2OENXNfd0G+eHa8at6mmpLJEznkIIIYSYVhI8U8h3wNDR/mFGo3r6imd4GEJequqbAdiSqepZXA6aNWPFUx8ZIOYoR8s1OLlrAD398CJdp+T4c7xkX8lTrWmuoWmTuk2zViU0bHwd7ZOE8Uw0TX184hnPoPHGQKHBE1TVcyoGC4G6ztFhWsrtebfa9vlD2QXP3v3xwUKmpooS+gJhhsOTD6/61r37eO7wAF+9fg0/fOPplJXY+Oht2wlHjGpgfJdnduc82/qH+d8H9nPl6nouPK2WDS1l7O/24w3OzKTUTK22AC9bXI1F45Req9JjBM/aCcFTdnkKIYQQYnpJ8Exh1bwyjvYPMzSS2w/Nrd2TT7Q121prG1pw2q2Zz3laLOCsnHSqbSgSxTE6RJE7x/OdkHGXJ/0HYbiX4bqNPHOoj2iq9SAN61SbappznpERI3gWOrjH7k5utZ3K4OmsmsLgqdqCF1ZYOZJH6+JoNMbA8GjmVltdT1qlYmqqUOf1Jtsj+sDeLm5+pJU3ntnCK9c3UuV28OVXrWHPcS8/fHC/elJpbsHz8//YjdWi8f+uXgm7b+cDz1xMnd7HtqODWX18oTq9QdyOIjzFtrTPKXPaWNNUfkqf8+z1q1U9Ne7kgN5S5eL40MjYGw9CCCGEEFNMgmcKq/I853nAmOK5KM0OT7Md1eqp4/SW8uwn207SavtSp48y/LjKstgLOp7bDJ5pJn22PQtA+Wnn4gtGUn89bCVQtyrlZNuRcJSiUaM9tuDg6Zq+4LnoAlhwTuGvA/HgeXptEUf7h+nLcaXKgLHDsypT8Az0qOFKxmAhk7lSJV2bb1v/MB/943ZWzSvlf65eGb//8lX1XH96Iz96uJUd7YMJrbaZg+d9e7q4f283H7lkGfPKS2Dnnyga9fGWovt4fobOeXYOBakrzXwu9rwl1WxrG5yxSuxc0+MLYbdaKC0pSrq/pdJJTIeOwQJX8QghhBBCpCHBM4VV81SY2X0st3Oerd0B6kodlKarupjnIN21bFpQyYud3sw/ADur1TnMNHa0DVBGgPKq2pyu1bwOIP2AobZnwFHK6nVqlcpTB9ME4MaN0PECxKJJd3f7gri0EWKatfDBPY5pbLW99Atw5dcLfx2ItxSvr1ffA8/nWPHrMYJqTaZW2/hE2+SKZ7NR8UzV5huKRLnhd88T03X+701nUGxLXtfy2WtWUeN28NE/bieIXb3pkaHiORyO8Lk7dnNanYe3n7MAImE4+DAAb7Y9xM7DaarpU0zt8Mz8PXbu0mqiMZ2n07WOn+R6fCGq3XbVlv/Yd6BzFyC7PIUQQggx/SR4plDjcVBX6sj5nGemibbxllZ3HZsWVBLT4flMA1hcVZO22u4/egyrplNakUfFM95qO0nwbNpEbZmTRTWuSc55blTDfnr3Jd3d5Q3hZoSozV344B67O3m4UND4dzMVK1CmklHxXFZhwWbVch6w0+fPsuIZD56Lk+6u8ThwFFlS7hD96t0vsr19iG++Zh3zqyZW5cucNr7+mrUc6Pbznfv2Gbs8J1+p8sMHD9AxOMKXXrUam9UCR59Ulemzb6BM99HU/g9iqVq0p1jXUHDS852m01vKKbFZT9l22x5/SA0W8nfDA5+HF34DSPAUQgghxPST4JnGqnllOVU8dV3nYLd/8om2/m5AA1c165vLsVo0tmRqt83Qanu0Q00d1Zx5nPF0uMHmTB08Rwahey+0nAXA2YuqeO7wwMR9j5B2wFCnN4hbCxY2WMhkdxuTbA3ximd54a89lYzg6YiNsGpeWeY3FsbpNSqeGc949u4Hqx3KW5Lu1jRzl2dygLhrx3F++eRh3nXuQq5YXZ/2ZS9YVsMbNrfw08cOMmCrm7TieaDbx08fO8hrNjSxaYHx/bf/PnVdL/80A6XLeWPsLg50+9K+xlSIxXS6faFJV6mYHEVWzlxUecoOGOr1GcGzc6e6o68VUMOG7EUW2eUphBBCiGkjwTON1fNKOdDtZyQczfxk1JoCXygyecUz0K2GBVltuBxFrJpXynOHMwwYclbDyMCENlaA4GiUgb5O9ZuSiqyuc4J0uzw7tgA6NKs227MXV+EPRdiZas1M5WLV8jpuwFC3N4iLkcJ2eJrsrnEVT+M6pmoo0FQxQ3Z4mA3zK9jePpjTwJaximemVttWtb/TYp3wUFOFM+mM58EeP5/8yw5Obynnk1csz3gNn3nFChrLS3jwmA09zRlPXde58fZdOO1FfPrKhNfcdw8sOBccbkY3vpfTLO10PP+vjJ+zEL2BEJGYTkMWrbYA5y6p5mBv4JQ8zxiveHbtVnf0q/2tFotGc0WJ7PIUQgghxLSR4JnGynllxHSSdxtOIuNEW1CVRXdd/LebFlSyrW2QUGSScOuqBnQVPsfZc9yLWzfCWL7B012XuuJ59Bm1O7NxAwBnLlQ7RZ86mKLd1mI8r31r0t1d3iClWhDLVLTDpjrjaXeDtSj9x8wGc6dm2M+G+RWEIjH2Hs++ZbvXH8JeZMHjyPDn6ts/4XynqamiJB48g6NRPnDr89isGj964xnYizL/lXc7ivjWa9fx4kgZWsg3FvIT/H3bMZ4+2M8nr1g+1hbcf1Bd19LLAKg5+430U0rd3l9k/JyFyGaVSqLzlqq29CdOsapnNKbT5w+panqXOtvJ4JH4Ht/5VS5ptRVCCCHEtJHgmcbqRhWWsj3naU60zXjG0z02BGjTAhVMdnVM8jmcKvClarfd1TFEOUYYyzt41qoJqeO1PaOm1RrTaGs8DpbWutOf82zcCN27k8JhlzdEeVEIzTFVrbbjKp5TMVhoqhmttoQDbJiv/p3kcs6z1x+m2mWffCdrNAL9h9IGz+YKJ/2BMIFQhM/+fTcvdvr4zuvXq4mzWTprURWnLVOVzBd27Up6bGhklC/dtZd1zeX826bmsQf236dujeCp2Up4vOyVLPc9FW/pnA5m8IwPFxpqB19n2ucvq3NT63Hw2Cl2zrM/ECamY7Ta7gI0iEVgqA0Y2+Wp69N/JlcIIYQQpx4Jnmk0lpdQVmLL+pxna7cft6No8pUO/u6xgT7AhvnqXNyWydptzeA5PDHw7WgforFY/dCd91lHV83EPZ7RCHRsheazku4+e3EVWw4PpG4dbdoIegyOb4vf1ekNUqYFC1+lAip4jgYgZnzu4OAcDZ5mq22AutJiGstL2JrDSpFef4hqT4bznYNHIDYK1UtTPmzu8vz+A/u5bUsbN1y4hAtPy33q8TXnqTbrW+95Mmn68nfufYn+QIgvX7caiyUhIO+7R7VdJww86lv5ZiK6hdCTN+X8+bPV5TWCZ2mx2m/621fDL1+hJuymoGka5y6p5okDvTMy+Giu6PGp88N1JRr0vgTNZ6oHjHbb5kon/lCEgeFTc9WMEEIIIaaXBM80NE1j1bzSnCqei2tc6StVum602o4FgBqPg0XVrsn3ebqq1W2KybY724dYVmr8kFhSntV1TuCuVetajHY7ALr3qMmk5g+mhrMXVTEyGmVnx+DE1zFacmNtW9jVMcSPHjrA3uNeXNoI2KfojCeo8AkQ8s7R4GlWPFXld8P8ipwGDPUFQlS5sjjfCZO22gL85NGDnLWokg9fkjqgZuKoUoOLHMPH+dKdewD1Pfebp4/w1rMXsLox4esfDsDhx2HZ5UmvcdqSJdwZOxvr9t+lbNmdCp3eIFaLplp+u/dAz4tq6u8z6cPuuUur6Q+E2ZNDG/SJzhxc1RRtU5XOldeqB4zgKZNthRBCCDGdJHhOYnVjGS8e9zGaapLrOK3dARZPdr4z5IPISNIZT4CNCyrYcqQ/feUlTavtcDjC/m4f851hsLmgKEOVLB13LaAnB9u2Z9StMVjIdOYi45znuHbbgUCYOw6E6bU18vCDd3P1Dx7nm/e8xPwqJx4tqM5nFsp8DbOVNzg09wYLgdpXqlnibcEb5ldwfCjIsSwH2fT6wpkn2qbZ4WlqqlABotrt4H//7XSKrHn+NffUg2blFfOj/HFLO/fv6eLG23dS5Xbw0cuWJT/30KMQDcHSS5PuXtdUzi+jV1AUCcALt+Z3HRl0DoWo8ziwWjTYfbv6+s8/Bx75BniPp/yYc5aoN3ROpbUqZsWzdni/umPxxWqqdf8hQIKnEEIIIaaXBM9JrJpXSjga40C3f9Ln+YKjdHqDGc53GgN83MktjxsXVDI4PEprT5rPEW+1TW7H3XPMS0yHefZg/uc7IfUuz7ZnwF0/YVVHpcvO8noPTxzoY1vbIN+7fx+v+r8n2PCl+/jP37/As6MLOcPayrdfu45nP3Mxd95wrgocU9VqC2PnPOfqGU9NSzqPekZL9uc8dV1XFc+MwXO/aq02vzfGqXbbef8Fi/npWzdQm+XAnZQsViidx5lVI5xW5+EDtz7P9vYhbnzFCkqLbcnP3X+vegNk/jlJd7scRUTr1/OSfRU8++OU05kL1ekdoa7MaLPdc7u6hlf+EKKjcP9nU35MXWkxy+rcp9RalR6j4lnu26feIKlaoiYj96sKenOlqpTLShUhhBBCTAcJnqZYFJ75SdK5sFXzshswdLBHhYxJJ9oGUgfPzcb+w7TttkUOVdkb12q7o121LVZaA4UFT3ea4NlypgpR45y9uIqnDvZx3Y+e4PsP7EfX4T8vXsrfPvAyrrj8asojvbx6iUatpxhGh9W5z6na4wljuzznavAEY/WLeiNheYOHEps1q+DpHYkwGtWpzrhK5YAKDWnaujVN41NXLuf0lgK+L0xlTVi9HXz7deuI6TovW1zFtevmJT9H12HfvbD4wpSV9zNaKrg5eCkMHIZ9U79apXMoqM53du+F3n2w6joVqF72QdhxGxx9OuXHnbukhmcP9xMcnfowPBf1+EI47VZsPbuhdoWaCF25MN5q67QXUeNxyEoVIYQQQkyLjMFT07Sfa5rWrWnaroT7PqdpWoemaduMf66a3sucAYcegX9+HP767vh5x4XVbkpsVnal2l2Z4EBWq1SMAT7jWm3nVzmpdjsm3+fprJzQarurY4haj4PiUW/+5ztBDReCsWDsPQ6DRyec7zS95az5vPXs+Xz/39bz/I2Xcvt/nMOHL1nG6S0VWJo3qSeZ+zxDRkickorn2LRYdP0ECJ7qzQib1cK65jKez2LAUG9AVaQyttr2Hkg7WGjKlTaCt53VjWXc/aHz+MlbN048x9y9F7ztE9psTWfML+eO8AZG3fPg6akfMtTlDalVKntuV222K4yzi+d9FEqb4O6Ppay0nr+smnAkxl07Urfjnmx6fCFq3Ha1SqVulbqzcpF6Q8D4+rRUOjnSH0j/IkIIIYQQecqm4vlL4IoU939X1/X1xj93T+1lzYLFF8HlX4E9f4e/fwBiUawWjRUNHvZkqHi29vgpsmjxM1IpxVttk4OnpmlsWlCRIXhWT5hqu6NjiLVNZWq/Z0EVz7rk64uf70wdPBfVuPnCK1fzyvWNVIwfglO/Bqx2aDeDp9E+PBXBM/GMZ9ivKqknQPAEdc5zzzEvI+HJK2u9viyCZ8gPvmNJk2OnVVkTDHVALMayOg/uVPtF99+jbo01KuOd0VJBFCu7Gl8Hhx8zVnlMDX8ogj8Uob7Uoc53zj9nrIpvd8FlX4TOnbD1lxM+9rylNaxvLuer/9zL4HDqCbhxx7ZB27NTdt2zodcfYpkzoP5bUrdG3Vm5GKJh8HYAKni29Wd3HlkIIYQQIhcZg6eu648Ck6Sik8jZ/wEX/T/VnnfnhyEWY3VjGXuOeyddu3Cg28+Cahe2yYa4+LtBs0JJ5YSHNi2opH1ghONDaX7gc1Untdr6QxFae/ysaSwvPHg63GrAiLnLs+1Zdf6rfm3ur1XkUB/XsVX93myLndJWW//YdNQ5GzzdE4JnJKazo31w0g/rC6jwUzVZq22/OdF2hiqeZU1qdUuqXa+m/fepIFM6L+XDLZVOqt12/sLFUFQy6bTZXJk7PJdZ2tWKkJWvTH7CqlfBgvPgwS9OOCdttWh85VVrGBge5Wv/fDH9Jzn0GPz8cvjd62D0xA1lPb4Qa4vUzk7qV6vbykXqNmGlyrGhkdQrk4QQQgghClDIGc8bNE3bYbTipk0+mqa9V9O0LZqmbenpmeSH17ni/I/B+R+H538N//wEqxo8+EMRjkwycKPVWKUyKX+Xamu1TPySb8p0ztNZDYGxiufujiF0HdY2lhYePCF5l2fbMzDvDCjKcM4wnaaNcOwF1a48pa22icHTqEDP2eA5dsYT4PRmY8BQqnZbXYeX/gn+nvi6i0krnhkm2k65siZ1O9Se+vGRAXWGclnqaieoqv7pLRU80RGD9W+AHX+a0Dqer3jw7L0/uc127JPDld9Q3zMPfmnCx6+cV8q7z13IH55r49lDKd5fa3sOfvd69b02MgC7/zYl1z0bevwhTtOOqN8kttpC0koVXYeOLKcwCyGEEEJkK9/geROwGFgPHAe+ne6Juq7/RNf1jbqub6ypqcnz082wCz8DZ98Az/2Ui9p/BOjsPpb6nOdoNMaRvuHJz3fChB2eiVY0eHDarWxJ127rrFTtcbqquu40zpyurrOpNrlCg6e7Vl3f6Agc3z5hjUpOGjeqoUI9exNabaei4plwxjNe8ZyD61RgQqtthcvO4hpX6n2eBx6A3/8b3HQ2nqMPoGlQ4bRNfJ7J3OFpBobpZgZPb5rg2fog6NG0bbamM1oqONQbYHDtu9Tala2/mJLL6/Sq4Fnb9i/VZuupm/ikupWw+T3qcx7fPuHhD12ylKaKEv77bzsJRRLaoY/vgFtfrf5+vPcRqF4Gz/1sSq57poUjMQaHR5kfOQRlzWP/zfA0qA4H4/tKVqoIIYQQYrrkFTx1Xe/SdT2q63oM+ClQQFKZgzQNLvsSbHoPNTt+zMdsf2FXR+pznkf6honE9MlXqYCqKKYJnkVWC2e0VHDXjuP8v9t38csnDvHY/h46BkdUi6+rWv2wblTRdrQPMa+smBqr8cNhwcGzTrVSHntBtVWmOd+ZlaYN6rb9uYSK5xQERHvCGc8532qbHDxBBa+tRwbQ9YSWbV2HR78BnnngruNVez/KN4p/RVE0mP61e/er4GCf5DzxVCptVLfpKp7771Pff02bJn2ZM1rKAdgaqFHnqZ/9WdIE6Xx1eYMs1dqxD+yf2Gab6OWfVm3ud38i/gaOyWkv4ovXreZAt5+fPKIqf/S8BL95Fdg98LY7oLQBNr1btZEfe6Hg655pfcbgqvqRA1C3euwBiwUqFsZ3ec6vkuAphBBCiOmRV/DUNK0h4bevAqZuWshcYbbonf4WbrD+lUUv3pzyaVlNtAUV7NwpqjGGd567gKaKEm5/oYPP/WMPb7nlWc752oOs+uw9fPdJVQn9+X3Pccf2Y7zQNsDqRqP1D6au1TY+WKiA9xEqFqr9ku1bp/aMp7VInQ9MOuNZXvjrTodxZzxBnfMcGB7lUG/C/YcfV1/z8z4K73mQe8tex2v1e+DH56cPN30HZm6wEKjvLZtLDRgaLxZTwXPJJWrn5yTWNpVTZNHUWpmzPgD+TjXIq0CdQ0GudzwHaBPbbBOVlMMln4W2p2HHHyc8fOFptVy9toEfPHSAowd2w69fqVp333bH2D7bdf+mzkM/d0vB1z3TenwhHITxBA6PtdmaKhfFW21r3A4cRRaO9slkWyGEEEJMrRQjKpNpmvZ74OVAtaZp7cBngZdrmrYe0IHDwPum7xJnkcUC13yfFw4e53VDv0B/aina2f+R9JTWHhU8F01W8YzFJm21BbhoeR0XLa9D13V6/CFauwO09vg52BNAP7oPAnDHkzvZFlNnr96wuQVGjqkPnopW2+F+OPKkOjvoqs7/tTRNtdt2bBlb+TEVrbYwdnbyhKh4+lVlzVg9smG+cc7zyMDY98qj31RvRpz+Zihy8OPid/CsbQM3hr4PP7tEtXyf86GxUKfrKniuff3M/Vk0DcoaYaht4mPHXlBDrzK02QKU2K2snFeq1spcdrH6Pnv6/2DNa9LuI81GpzfIuy1PQ3OaNttE698MW34B9/0PLL9qwtnj/7l6JS/u20vx7z+Ebh9Fe/tdySG/uAzWvg6236am5Rb6924G9fhCLNXasejRscFCpsqF0PoAxGJYLBaaK51S8RRCCCHElMtmqu0bdF1v0HXdput6k67rt+i6/hZd19four5W1/VrdV0/eRfhWazs3PR17o5uRrvnvydUO1q7/TSUFadeM2EKDqoW1kkqniZN06j1FHP24irefNZ8/uealXz0lS8D4I9vXsY/P3QeP3vrRt529oKpq3i6awEdDj5SWJutqWmjalX0HlNVI9sUtYU63MlnPKeihXc62F3q3GMkFL9rcY2b0uKisX2ebc+q3bEv+yDYSgDo84foqjoT/v0JWH41PPB5+NU1aq8qqKp5yDtzg4VMZU2pW2333wNoquKZhTNaKtjeNkREB858Pxx7XrVkF8De/xLzY22w6rrMT7ZY4KpvqmrrI9+Y8HCtxctfnV+nOOLlwY03q7Oh4218F0RGYNvvC7rumdbjC7HCYnwfmatUTFWLIRIEn/rPeEulk6P5rlR5/HvQ+lD+F5pClzfI0PDolL6mEEIIIWZeIVNtTxkrmyr50OgN9DRcCHd9FF64Nf6YmmibxWAhUC2t+XBWAWAP9bOioZRLVtbhchRNYautUYmNhgprszU1bgB0OPSoOiNXQEUrid1tnPEcVGE238m70y0+gXesXdFi0ThjvjrnCcCj31JnDje8I/6cPn+YarddDZN67S/hupvVgJubzlWTYHv3qyfOdPAsbYzveUyy/151ttM5cUVQKqe3lDMyGuXFTh+sewM4yuDpwlarrPM+TCxTm22ipo2q8vn0TWNfT1AV/19fh2e0h69VfIGPPaHRH0hxBrVhLTRtVkOGYifOypEeX4gV2lF0m1NVOBOlmGzb1j+cfB45G6Mj8MAX4I4PJr3pUohYTOc1Nz/Jf/1p25S8nhBCCCFmjwTPLKxoKCWiFfGHhV+ERRfCHTfArr+g6zqtPYEsJtoaq0qyqHimZARPhvuS75/Siqeh+azCXguM4ImabDsVq1RMdrdqYQ15526bLSRM4PUn3b2hpYJ9XX58h7eqauHZH4i3IQdHo/hCkbFVKpqmVo/8++NQuxz++m71Az1A9UxXPJvV93BimPB1qVbbSdaojGe2Gz9/dED9uc94izrnmW5wUQaj0RgvjzxBR+npmdtsE13yWVVl/ucnVfty0Au/fTX0HUB7w+9527+9AV8wwlfu3pv64ze9W+1TPfRIXtcd19eq3pyZAb3+EGuK2tBqV048jxsPnmqybXOlE38owkCuVcbuvarSP9Sm1lFNga1HB2jrH+HRfb34glL1FEIIIU5kEjyz4HIUsbDaxY7OEPzb71TF444P0d3ZgT8UyWKHp1HxzDd4OjxgtavzdIlGBsDqiLdq5s2sxBaXqZURhSoph6opPt8JyWc852qbLSSvfklgBq/gA19X1b7N740/1mdU16rd46q4FQvg7XfDhTfCwGG1+qKsebquPLUyY7Kt99jYfQfuV7dZnO80NZaXUOtxjK2V2fxeQIen/i+vyxo4vINllg46m67I7QPdtWrKbesDsOsvak9n5w543a9g0cs5rd7De89fxJ+3tvNUa9/Ej1/5SvVmUCGrVcIB+M118Jvr1b/XadbjC3IaRyae7wRV0bbakyqekMdk284d6rZqiarojxa+C/SObep7LhyN8dBLJ8AeaCGEEEKkJcEzS6vnlbHnmFetsbj2BzAaIPLwNwFYnHXFM89WW00DZzUEUlQ8SyoKb2U1A3HTZnUObio0bVS3UzHR1pR4xnNOVzwnttoCrGsu5zRLOzVt98CZ7036M/T6VDWxyuWY+HrWIrjg4/Deh9QbHxkmyE45c5dnYmVy/z3grof6tVm/jKZpnNFSwfNHB9UdFfNh/ZvgmZvg6DM5X1Zk19+I6RrhpVfn/LFsfg/ULIe/vEtNur3+J3DalfGH//PipbRUOvnM33YSHI0mf6ytGE5/C7x0d+ppv9l46CtjZ3cf/np+r5GD2FAHpfiTV6mYLFb1BocRPM2VKkdynWzbuVO9IXTN/6pztAVO/41EY9y98zhXrq6n2u3gnt2dBb2eEEIIIWaXBM8srZpXSsfgCAOBMNQsg9PfQv2+39KkdbMk0xnPQLeqKBSy/sNZlbrVdiomazrcqsV21asKfy2TGTynutXW3OM5p4Nn6lZbl6OIT7rvJqgVw5n/nvSYuWexanzFM1HDOlhy8ZRealZKjeBpnvOMjqoBMksvzflNjzPml3O0f5geI2hz+VfU6//tferfbQ48rXfxnH4aFXV5VICtNrjqW6ryfO0PYPWrkx4utln50nWrOdgb4KaHWyd+/MZ3qDbdrb/M/XN3PK8m+m54B5z5PtjxB+h+MffXyUGF9yX1i1TBE4yVKmqXZ3OFCp5tuVY8j+9Qr7/gHLWr9fHv5PzvNNGTrX30BcK8cv08Ll1Zx8Mvdk98E0AAoOs6v3ziEB2DhVeZhRBCiOkiwTNLq+apoLP7mFfd8fJPEcXKpxx/psaTokqVyN+tqoqFVCZdVSlabQenbqXDu+6B0980Na8FaqUKTHGrrXus1faECJ7jKkZ9rbw8/Ci/i11KtCR5IE+vz2y1zfC9NBvMVltzpcrRp9U522WX5/xSSec8AYpL4VU3qXbTe2/M/oW6X8Tj3c9d0TOpLyvO+ToAWHgefPKQWmeTwvnLanjl+nnc9HBrfF9vXMUC1Wb8/K9UEM9WdBTu+E810OvSz8O5H1WDsh76cn5/hizVjxxQvxi/w9NUuVhVPHWdEruVGo8jt1bbWBS6dqvhS6Baw4f74JnU+4+zccf2Y3gcRbz8tFouX1VHIBzliQO9mT/wFNTpDfK5f+zh108dnu1LEUIIIdKS4JmlVfPUmcJdx4xVHqXz+KfrOq7mcTTzbFM6/q78J9qanNUQSHHGc67uEqxbBUUlqqI0VRLPeM7p4Jm61ZbHv4tuKeKm0JW81OlLeqjXqHjOyeBpK1Hff2Zb6f57wGKDRS/P+aVWzSvDZtXGgifAgnPhZTfA1l/Avnuze6E9t6Oj8YB2FhVOW87XEZehbfn/Xb2SEruV//7bzolTXje9W/3dfvHO7D/fkz+Arp3wim+r72FXFZx9A+y9Q1VCp8FwOMJi/Qje4kYV9FOpXAijw/FjAS257vLsPwijAag3VrU0bYDTroIn/1e9QZaj4GiUe3Z1ctmqeoptVl62uBqPo0jabdM42KP+W7O7wzvLVyKEEEKkJ8EzSxUuO43lJWMVT+D7wVcQsJbC/Z+f/IP9PfkPFjI5q9TKh0RTWfGcalabOjd39gem7jUdbohF1NdhTgfPFK22g22w/fcMr34zPZSzNTF4oSqeLruVEvsMn9/MVlnj2BnP/ffB/Jfl1UZdbLOyal4ZLxwZTH7gwhuhdqWaGD3+LHMqu2+ntWQNltJ6tKla15NCtdvBp69czrOH+vnufft4+mAfB7r9DA2Poi++CMrnZ3+Wsa8VHvk6rLgGViScSz37P9Tf4we/OC1/hl5fmBXaEXxlp6V/kjnZtk+1FauVKjm0bZpvvpnBE+DC/1ZvEj31oxyvGB7Z14MvFOHa9fMAsBdZuHB5Lffv7SYSPXHW2MyUg70qeO46NpT7GhwhhBBihkjwzMGqeaXsNiqe3uAoB/1FbFvwbjUd8+DD6T/Q35W8siQfrmoIDUEkYbfgyICaIDtXrbw2fWtfPuKDivQTJHgmVDyf+D6g4b7oI9QkTnY19AVCVM3FaqeprFmd8Rw4Aj0v5tVma9owv4Lt7YOMJgYIW7F6o2K4H+78sDo/mU7PS9Czl0dt59JQWuBE5yy8bmMz5yyp4n8fPMC//eRpLvnOI6z7wr2c9j/38SPfeXD4MT7z4z/x8T9t5+v/epHfPn2E4XAk+UV0Hf7xITWF+spvJj9WXKpablsfhEOPTfn19w4OsEDrZLRmkr+L43Z5Nlc6OTY0QjiSZcg7vkNVwWtWjN1Xv0adG3/6/7J7MyHBHduPUemy87LFVfH7Ll9VT38gzJZxf3cEHOxRb3INDo/SPiDnPIUQQsxNEjxzsGpeGYd6AwRCEVqNM1/B9e9QP5Tf99nUC+VjUXU2cyoqnjA2YCgSUq1tczl4TrXECbnpWgbnApsazhIPnr5Otddw/RvQylvY0FLB1nE/PPf6QxNXqcwlpUbFc7/RCpvDGpXxzmipIBSJqSnRierXwEWfUW2nO25L/wK7bwc07hzdSF2+5ztzYLFo/Oodm/nXh8/jt+86k++9fj03vmIF7zh3AV2LX8coNs7qv51H9/fw00cPcuPtu/j4n3YkV55e+A0cfgwu+wKUNkz8JJvfA54GVfWc4opVqGMXVk3H0rAm/ZPKmsFSNDbZttKJrkP7QJbttp071ZTgonHfwy//tGrhfeJ7WV9vIBThgb1dXLWmHpt17H9RLz+tBnuRRdptUzjUG8BRpL5W5pujQgghxFwjwTMHq+aVouuw97g3PmxkYX0lXPgZOL4N9tw+8YMCvaDHCq94xoOncc7TPDc1V1ttp4M9YV/qXK54WqzqfKvZavvkDyA2Cud+BFAVv6TJrkCfPzzHK55NaqDQrr9AxUK1qzFPZ8wvB0g+52l62X9Cy9lw98dVe3Iqe25HbzmL3T4n9aUz8zUrslpYXl/KuUurue70Rt593iI+feUKvvDGC7CtvZ5r9Ed45r/OYt+XruQTV5zGXTuP8+unjqgP9nWpwUnzz4HT35r6E9hK4IJPQNszY+F+qnTtAsDZsi79c6xFqm3Y3OVZlcMuT11XrbYNKVbr1JwGa18Pz/5UvQGThfv2dBEcjXHtusak+12OIs5fWs29u7uknXScQ70Bzl9Wg9WisbNDgqcQQoi5SYJnDlY3qrCzq2OI1p4AdqtFLVtf+zqoXQUPfGHihMtAt7qdilZbGKt4jhg/tJ9KwTNxQu5cDp6gQvLosGox3PJzWPPaeDtjquClKp5zOXgaIeDoU6raWcC5yoayEhrKisf2eSayWOG6m9SbNbf/+8Qugp6XoHsPI0uvIRSJUVc6/RXPjDa9G8I+2PlHLBaN95+/mIuX1/Klu/awvW0Q/vkJGA3CNd+ffE/u6W9R03If+GLq7ok8lfTtxa8XU96Q4c2CykVjwbMyh5Uq/i4I9ED9Gn7z9BFeGP+GwgWfUG+8PPadrK73H9uP0VBWzMb5E//bdtmqejoGR5LO2p/qQpEobf3DrGgoZWmtm10yYEgIIcQcJcEzB3WlDqpcdnYfUxXPBdVOiqwW9cPyJZ+DgUMT9/oZUyILb7U1gqc52fZUDJ5Jrbbls3YZWbG7VKvt0/8HoyNw3n/FH1o1rwy71RI/5xmN6fQHwnO71bYsYVfmsvzbbE1nzK+YcM41rnIhXPFV1Zr6zE3JjxlttsfmXQqQ/yqVqdS0SbUJP3cL6DoWi8a3X7eOWk8xv/v1zaoT4oJPQPXSyV/HalPdE107Yfdfp+zyynz7aNXmU1RUNPkTqxarXZ66To3bgaPIkl3F87gaLLRXX8D/u30X/3Hr88n7NisXqZU1W3+RvoptGBwO8+j+Hq5e24DFMvHNjUtW1GHR4F+7pN3W1NY/TEyHRdUuVjeWsatDBgwJIYSYmyR45kDTNFbOK2X3MS8He/wsrkkIQksvhfnnqqmViUvT/UbFs+B1KuPOeJ7ywXOuVzzd4D0Gz/4EVr5StRwaim1WVjeWxs95DgyHielzdJWKqdSoeNqc6vu8QGe0VNAxOEKXN5j6Cae/BZZdqSZGd+8du3/P7dByFu2RcgAa5kLw1DRV9ezapVplgXKnnZteu5SPhH9Mm20hsbP/M7vXWv0a1T3x0Jdz2w+ajq5TN3KAo/ZFmZ9buUhVbgO9WCwazdmuVDEm2n5hixVPcRHHhoLc8vih5Oec/3F1++i4wUrj/HNXJ6NRfUKbbfwSXXY2L6yUc54JWo1VKgurXaxpLKMvEKYz3d8rIYQQYhZJ8MzR6sYy9nX5ONI/zJLahCCkaWohfKAneX2AGTwLrnhWAtopHjxPkDOeoK718GPqXOT5H5vw8Ib5FezoGCIUidLnV5OKq+ZyxdNTr4bPLLxATaAt0Bkt5QDpq56aBtf+r1rZ8tf3qmnOPfugew+svC4eWOdEqy2oVmpHadJqlbUvfo86bYAb/O/gp09OXumLs1jgohtVy+u23xV+XYNHccYC9LgyVFshYbLt2EqVo9msVOncQcDVzFMdo/zP1Su5dGUd//fQgaQzzJQ1wcZ3wgu/jbfzpnLHtmMsrHaxujH98LDLV9Wzv9sfn+R6qjtkrFJZWDP2dZvpdtsD3X6+eOceojGptAohhEhPgmeOVs0rJRLTicb05IonQNNGWHGtWpru71H3+bvB5ko+n5gPi1WFzFO51TZxb6RjDk+1hbGQvOzK5N2Ghg3zKwhHYuw+5qXXr35An9MVT4sVrvoWXPjpKXm5VfPKsBdZUg8YMrlr1bnIzh2qk2DP7YAGK6/l+JAKnrWeORI87S5Y/0Z1jf4eOPo0PPczOPP9NK0+j2/c8xLPHurP+DIAnHalat995OvqbGghjMFCvrLlmZ87bqVKS6WTo32BjG2bseM7eS7YyPJ6D9ef0cSnr1xOKBLjO/ftS37iuR8Fqx0e+UbK1+n2Bnn6UB/XrJs36W7Wy1bVA3DP7q7Mf6ZTwMEeP9VuB6XFNlY0lGLRmPEBQ3/f1sEtjx+aOKlaJAmORvEFp6CTQQghTlASPHO0et5YpS2p4mm6+H/UmT6zpWwqdnianFUJU20HQLPO/QA2lcwwZ3VMSdVtWpnXmqLaCarVFFTFbyx4zuGKJ8DGd0DDJJNRc2AvsrC2sSz1gKFEK66G9W+Gx7+jglzLWVA6jy5vkGq3HXvRHPpP2MZ3QTQMW26BO/4TylrQLrqRr716Dc0VJXzw98/H/11PStPUf0e8Heq1CqB37iSma4xWZRE8y5rVf1MSgmcgHKU/EE7/MUEvloGDbAk2899XrcBq0VhU4+YtZ8/ntueO8lKnb+y5njq1NmbHbWpI1Dh37jiOrsO161Ksm0nQWF7CmsYyabc1HOoNsKhG/ffGaS9icY2b3TMcPM0p71uPZPnmyinqi3fu4bU3PzXblyGEELNmDv3UdmJoqXTidqghHeb/7JNUL4Uz3qommfYfVFNtpyp4uqph2Pgf+8iA2uFZwHTRE05RsfrBeK632QIsvxrO+oCqgqdQW1pMc2UJW48M0Gu02s7piuc0OGN+BTuNduNJXfFV1arp74KV1wHQORScO222ppplsOA8ePhr0PsSXP1dcLjxFNv4vzdtYGB4lA//YVt27YgLz4dFL4fHvg0hX8anpxM5tpMjei3l5Vl0RhTZobx5wmTbyc55+o9uB0BrWMP5y8bOsX/o4qW4HUV8+e69yR9wzofVOeGHvzrhte7YfowVDaUsqfVMeGy8K1bXs61tkM4hOct4sCfAouqx/xetaSyb8YqnGTy3pGudFwC8cHSQFzt9dPvk+1YIcWqS4Jkji0UNGGosL8FpTzMl8uWfUhMqH/yyarWdyopnYqvtqdRmCypk290nRvBc/wYVmCaxoaXCCJ4hiiwapcW2Gbq4ueGMlvJ4u/Gkikvh+p9C40ZYfT0And4Q9XMteIIaMoQOa14HSy+J371yXilfuHYVjx/o5QcP7s/utS76H3Wm++mbMj83Db1rF3v1+dR4snxTI3GlSha7PJ984iEArr3iiqT7y512/vPipTy6r4eHX+oee8BVpd6Q2f036NwZv7utf5htbYNcu25eVpd5+Sp1Zv6+Pad21XNoeJS+QDjpTdBVjWV0+0J0z9CAoUg0xuE+dc50qwTPtKIxnVbjXHLas+1CCHGSk+CZh09duZwvXbc6/RM89eqHq11/hr7WwgcLmVzVya22p1rwBHVW9kQInlk4Y34F3b4QO9oHqXLbU66POJklthtn1HIWvOeB+Js4Xd7g3FilMt6Ka+Dq78FVE6e3vn5TM9ef0cj3H9jPY/t7Mr9W0wZVOX/yB2OdDrkI+bENHWFvrIWabKvplYuh7yDoOs0Vk+/ybB8YZujQVvzWMpYuXjbh8beevYAFVU6+fNdeItGEvaRn/4f6O/zAF9TKIVS1E+DqtZO32ZqW1HpYVOM65c95HuxVQWZh9dixjzXmvuljM1P1PNo/zGhUZ01jGceHgnQMZjGQ6hTUPjBMKKL+Hmw5LMFTCHFqkuCZhzNaKrhweYYq5jn/CSWVanG6ayrPePar5fKnavC0u06e4GkEr6cP9lPlOrXabGGs3fip1r6cPi44qs4dzsmKp8WqzsKWlE94SNM0vnTdapbWuvnwH7Zl1yZ60Y2q1faJ7+V+Ld170NBzr3iGhmC4nxK7lRqPI23F81v3vMQK7Qi2xvUpW/7tRRY+deUK9nf7uW1LwlTfknLVcrv/XvhqE/xwMyue/C8+W/0gzUNbYWQwq0u9fFU9Tx3sY3B4kjOoJzlzom1ixXPlvFI0beYm25pttq/fpHb9bjks5zxT2d+lvk4eR5G0JAshTlkSPKdLcdnY7ropa7WtBj0KwcFTN3hufq9aRn8SWF7vwWm3Eo3pVGcbDE4yl62s57H9vQyNZD/psdurBvTUzcWKZwZOexH/96YzGBmN8sHfP89oYiUwldoVsPb18MyPwXs8t09mtLLujbVkf344xWTbI30Tg+fO9iHu3HaU5ZZ2HE3pB05dvqqOzQsq+c69+5KneZ7zYXjjH+H8T+B3tbA8vIN3+H8Gv7oavj4fvr8O/vhWdcZ1//1wbBu0b4Wjz8DhJ+Dgw7ym7CXO53n2PPQH2PN32PlnePFuyDCFd7bFYjq/eOLQlATmgz0BrBYtXp0GcDuKWFjtmrFzngeM9tGr1zbgtFul3TaN/UZAv2b9PHYfGyI4muFsuxBCnITSHFIUU2LTuyDsh+WvmJrXc1Wr2+E+VRU4JYPne2b7CqZMkdXC+uZynmzto9o1xyfaTpOr1zZwy+OHuG9PF6/Z0JTVx3QaZ9fmZMUzC0tqPXz1+jV86A/buPFvu/jY5adNXpF8+adg11/g3hvhNTlMue3aRdDqodtaQ1lJlueHE4Nn8ybmVzp5+mByRVrXdb5y9142OLspio1OOulY0zRuvHoF1/7wCf7v4VY+eYUxXddigWWXw7LL+fG9L/GjfQd49sPrqPa9CMe3G//sUIEyjcXAL+zAc8Y/ptf/VrU8z1FPHezj8/9QOy/ffd6igl7rUG+AlkrnhOnOq+eVzVjl8UC3n7pSB+VOO6e3lEvwTGN/t4/60mIuPK2W3z1zlB3tQ2xeWDnblyWEEDNKgud0KnLABZ+YutdzGv+T8nepdrhTMXieZDbMr1DB8xSteK5vLqexvIS7dhzLPXiegBVP0yvXN7K9bYifP3GIvzzfzsUrann9pmbOX1pDkXVcI0rlQtU98fBXYO3rVGDLRucuOhyLqC4qzv78cMV8QItXPJsrnfxtWwehSBRHkRWAh1/q4amDffx2wwjsJuWe2kRrm8q5/vRGbnn8EG/c3EJz5Vh1Ttd17th+jJctrqa6rgnqmmDJ2FAmRgZV5TbkBUuRamW22IxfF3Hz40e5Z28Pv3/feRTbbfC716rq8BwOnvftUedSp6IiebA3wMLqidPVVzeWcsf2Y/T5Q1RN87Ts1m5/fLXYhpYKfvjQAfyhSHz6u1AOdPtZWudmw3z1/+0tR/oleAohTjnSansicRoVz75WdSvB84R3hvFDSNUpWvHUNI2r1zbw2P7erFsPu4ZO/OAJ8D/XrOT+j57PO85ZwJbDA7zzl1s45+sP8s17XuSIMSU07tyPQO1KuPMjEMzi7F4sBt17OGRdkP35TlBvlpUlr1TRdegYUANjItEYX/3nXhZWuzjbfQyKSqBqScaX/djlp2HR4Jv3JO/v3NE+xJG+Ya5Jt7uzpBwWnqe6RpZdrkLpogtgwTnQciZrNl/IC6PzeXiwBmqXw6b3wOHHoHNX9n/mGaTrOvfvVcFzV4HBMxbTOdTrTxM8zQFD03vOU9d1WnsCLK4xgueCSmI6bMu0n/cUE4vpHDACeqXLzqIal0y2FUKckiR4nkjMVts+Yx2DBM8T3sb5FaxpLGPjglP33+XVa+cRiencszu71Rid3iBOuxXPSVBRWVLr4TOvWMlTn76Ym998BisbSrnp4VYu+ObDvOEnT3P7Cx3qLFiRHa79AXiPwf2fy/zCg4ch7Gd3NIfznaaq9CtV/ry1nX1dfj55xWlYO3dC3SpVhcxgXnkJ7zlvEXdsP8bzR8d+4P7H9mPYrBpXrMpumu14mxdWUu60ca/5vXPGW9Se0Gd/nNfrTbeXuny0D4zQXFnCwd4A/lAk79fq9AYJjsZS7pNeNc8IntN8zrPLG8IfisQrnqe3lKNpqponxhwbGmE4HGWpsaPWXKWlz/HzyEKcSl7s9LJnmt+sExI8TyzOKnUrFc+ThqfYxj8+eC4b5p+6LVerG0tpqXRy547shud0DgWpLy1GSzFJ9URlL7JwxeoGfvGOzTzxqYv42GXL6Bgc4cO3bWPzl+/nf/6+C1/1Ojjr32HLLXDkyclf0Kj4PR9qyn6ViqlyEfSr/8a0VI6tVBkOR/jOffvYML+Cy1fWqRbYhrVZv+z7L1hMjcfBl+7cg67rxGI6d+44zgXLailz5rfD1ma1cPHyOu7f26UGNZVUqGFMO/4IgdymJc+E+4z1LzdcuARdp6Afcg72qKp4qopnWYmN+VXOaQ+e5kTbJUbFs7TYxml1njl7zjN2+EnC31mrBlTNIHOw0NI69XXauKCCgeFRWnsCk32YEGKG6LrOB259nnf88llCERn8NZ0keJ5IbCVgc0GvVDzFycNst32ytY8+fyjj8zu9QepO0MFC2WgoK+GGi5by8Mdezu/ecyYXLa/lN08f4aePHVLrVcpb4I4Pwugk61i6dqFrFp4bqc+t1RZU8BwZgOF+atwOHEUWjvQN89NHD9HtC/HfVy1HGzqqzplnON+ZyOUo4mOXLeP5o4PcvbOTZw/30+kNcu36ebld3ziXr6rDG4yMDUE6830QCcLzvyrodafD/Xu7WN9cHl/HVcg5z0PGDk+zzXW81fPKpn2X54FuH0C84gkqVL1wdJBobG5V8/Ye7aLzN+/C7j3CyO/fBv7uGfvcB7qSA7r5RuNWqQwLMSe82OnjYE+ALm+I21/omO3LOalJ8DzRuKpg4JD6tQRPcZK4eu08ojGde4yK0GQ6h4In/PnObFgsGi9bXM33/u10Tm8u57H9PWqP7TXfh74D8Og30n9w5y6iFYsZjtnyC54AA4ewWDRaKp08f3SAHz/aypWr69UPzcaqFurTT7RN5TUbmlle7+Fr/9rLn7e2U2KzcsmKwtZNnb+shhKbdaxVu3YFLHo5PPcziObfyjrVurxBtrcPcenKOmo9xdR6HAVVJFt7ArjsVmrT/Ptd3VhGW//ItO45be0J4CkuSvoe2zC/An8owkudvmn7vLkIhCJ8+a49PPrT/2Je9Bg/crwbLTRE5E/vgtjMVDb2d/uodjuoMM7yL65xUe60zdnKsBCnmrt3Hseiqb+bP37k4Jx74+xkIsHzROOsgpjxw5QET3GSWNHgYVG1izt3HJv0ebGYTrfv1Aieic5bWsP2tkGGhkdh8UWw/k3w+PfUypFUunYyXKFWl+QdPPvVG1wqeA4SjsT4hLkO5fgO0Cwq5OXAatG48RUraesf4c9b27lkZR1Oe2FndYttVi5YVsO9u7uImT8snPl+8HbAi3cW9NpT6YG9qsJ26co6ANY0lhUUPA/1BlhY40rbcr66sRSA3dN4ZulAt5/FNe6ka9g4h6p59+7u5NLvPMJTjz/Ae6x3EVrzJi546//wudG3UXTkUXj0mzNyHfu7/SxNqAprmsaGlgq2SPAUYtbpus5dO49z1qIqPnrpaRzsDYzNDRBTToLnicacbAtQXDZ71yHEFDLbbZ8+2EePL327bf9wmNGofsLu8MzX+cuqienwRGuvuuOyL6k3oe64YWJVLzgEg0fpcy8DyH24UMUCdZuwUgXgzWfNHztP2LkTqpeB3ZniBSZ37tJqLjJaTa9dV1ibreny1XV0+0Jsax9Udyy9TP05npk7Q4bu29NJS6UzHkBWN5bR2uNnOJxfVfZgr5+F1anbbEG12sLUrG1J50CPP6nNFqCpooRaj2NWQ1XH4Ajv+fUW3vubrZQ7NP5YfysWdy2Oq77C6sYyHJvexl+j56I//DVofWhar0XXdQ50+ePnO00bFlRwsCdAf2D6KtJCiMxe6lJttletaeCK1fUsqHJy0yOtMvxrmkjwPNGYk20dZVlNkxTiRHH1unnEdPjXrvRDhjqNVSon8xnPVNY1leMpLlLttqB2+l71DTi+HZ7+UfKTu/YAcLx4MZBHxdNWAqWN8eB55sJKmitL+OBFCWtTOnfkdL5zvC+8chUfePliXn5aTd6vkeii0+oosmhj7bYWK2x+Lxx9Un2NZlkgFOGJ1j4uWVEXrw6uaSwjlueAoVAkSvvACItSDBYyVbjsNJaXTNuAoaGRUXp8oQnBU9M0Ni6oYMvhmQ+ekWiMnz56kEu/8wiP7e/hU1cu5x8btuIc2Auv+LZazwN89PLlfMf+77RZm9H/+h7wZjfYLB+d3iC+UCSp4gljlWFZqyLE7Lp7h2qzvWJ1PVaLxvsuWMyO9iGebJ17A+pOBhI8TzTmZFvjf6BCnCyW1XlYWuvmH5NMt+08SXZ45qrIauGcxdU8uq937F3YldfB8qvhoa+MTboG6FITbQ9aFgJ5BE9Q7bbGa165poHHPnERVWblNNCn2ljrs59oO15ThZNPXLEcm3Vq/hdU5rRx9uIq7t3dNfb1Wf8mNYxtDlQ9H9vfSzgS45KVY+dZ1zTlX5E80jeMrpNylUqiNY1l09ZqO36ibaIN8yvpGByJ/32dCc8fHeCaHz7Bl+/ey1mLqrjvIxfw/pVRrI9+Q/1dWXF1/LllJTY++or1vHP4BqJBP/zlXdN2Hni/OVjIWKViWttUhs2qzc12W12H0Nw4ozuX/fiRVr57377ZvgxRALPN9syFVfHuoOvPaKTW4+Cmh1szfLTIhwTPE008eMr5TnHyuXrtPJ473E+XN/UPrJ3G/adaqy3Aecuq6Rgc4WCvsYJB0+Cqb4HVAf/4kPphEVQbbEkFh8NllNisuOx5dEZUju3ynKDTOFdaQMVzOly+qp5DvYF4IKKkHNa/AXb+Cfw9s3pt9+/toqzExqYFY2uTaj0Oqt2OvILnZKtUEq1uLOVQbwBvcDTnz5FJa48xVbc2VfBU/3+aqeE5//vAfl5905MMBMLc/OYzuOVtG2kuL1bTn21OuGriWc5Xnd5I5YK1fC72LjjyBDz8lWm5tvGrVEzFNiur5pXNibOwEzz2bfjGIvWmjbQbpvSvXcf56j9f5EcPHZB26RPYvi4/rT0Brlo7tkvaUWTlXecu5PEDvewwj2+IKZMxeGqa9nNN07o1TduVcF+lpmn3aZq237iVFDRTzFZbCZ7iJPSKtQ3oupowl0qXN4jVouVXxTvBnb9UtaU+ti8hRJU2wGVfgMOPja0P6doFdavpDYSp8Tjy23dauQiGe9V50fHiE23zr3hOB/Pr89TBhPaoze+DaBie/+XsXBQQjek8+GI3F55Wk1Th1TSNNY2l7O7IvSJ5qDfb4KmqqtOxFL2124/daqG5omTCY6vmlVJss7BlBkJVrz/EDx7cz6Ur6rj/vy7gitUN6nt+yy3Q9jRc8VVwT5ycrGkaX3zlan4fOofnKl6hwtb++6b8+g50+6hw2qgyJtom2ji/gu3tQ4QjsSn/vHkLDxN67AcMRy3wz08w8ts3qPVKIq6tf5iP/3kHLZVOIjE97f+vxNx3lzHN9opV9Un3v/HMFkqLi6TqOQ2yqXj+Erhi3H2fAh7QdX0p8IDxezETpOIpTmJLat0sr/dwZ5p2286hIDVuB1ZLHmHqBNdc6WRBlZPH9vcmP3DG22DBeXDv/8BQuzrjWb+GHn+IavfEH3azMm6ybZLOHeoMqKsqv9eeJs2VJcwrK+aZgwlhp2YZLL4YnrsFolNf9cvG80cH6A+EucSYZptoTWMZ+7t9jIRzW+txsMdPjceBp9g26fNWGQOGdrUPwuBReOlfKmA9fVNOny+VA91+Fla7KErRLm2zWljXVD4jFc+/bG1nNKrz8ctPw+0wJiQPtsH9n1MToNe9Ie3Hnlbv4R0vW8BbOl/LSMVy+Ot71d+hKbS/y8/SWk/KN4A2zK8gHIlN+77VXAS33opjdJAPWT7NlyNvwnrgXvq+tZmtj/9rbGr0KSwciXHD718A4NZ3n8mSWjd3bJ98GruYm3Rd564dx9i8sHLCm9meYhtvPXsB/9rdGe/uEFMjY/DUdf1RYPzblq8EzO3cvwKum9rLEmk5peIpTm7XrJvH1iMDHBscmfBYpzdI3Sl2vjPReUtreOpgX3KFRNPUbs9oCP7wJoiMQN1qenyh/CvD8eCZot22c+ecq3aCqmCduaiKZw71JU8jPPP94DsOe++Yleu6f08XNqvGBcsmDlJabQ4YOp5bRfJQbyD9YKGRATj8BDz7U2oe/iR3lHyeNz18HnxvDfz+9fDAF+Bfn4LOXak/PkupJtom2riggt3HvHlP7c1GLKbz+2ePsmlBBUvrjDOUug53fkTdXv099fdjEh++dBllHg8f0j+CHg3Dn985ZW9S6LrO/m4/S+pSf502LDBakmdhEFNKsRjDj/wv22OLuOHtb+Nt//Utblv7M0aisO6+N/CTr97ATQ/tp8+ffvL4ye4b/3qR7W2DfOPVa2mudPLKdfN49lB/yv9fTafhcISrvv8YD73YPaOf92Rittm+Yk1Dysfffs4C7FYLP3kkzbETkZd8z3jW6bpuliQ6gYlv5YrpIa224iRn/k8gVftS51CQ+tJTr83WdP6yGobD0YmVpKrFcOF/w/Ft6vd1qwoMnmow0YTgGR6G3n1z7nyn6cyFlfT6w7QaZyABWHKJCtJP3zwr13Tf3i7OWlSVsjpptsLmOnn2YG8gebBQ5y647S3w7RXw9QXwy6vg7o/B7r9SbLdzr/V8eMV34J33wH9uA6sdXvhN3n+m4GiUtv7hlOc7TRvnVxKN6WxrG8z782Ty1ME+DvcN88YzW8bu3PFHOHAfXPJZqJif8TXcjiJufMVK7u308Njy/wdtz8ADn5+S6+vxhxgaGR2baDvUnrR7t9ZTTEulc0ZakrMxuP0OKoNH2TrvTaxrqaCpwslbXn09tR97lq6my3j/6G9Z9eA7uPqrf+VDf3iB5w73n1IrJ+7f08XPHj/EW8+ez5XG/6euXa9WQv1jhquezxzqZ89xL7c8nqIrRWTlrp3H0TS4fHV9yser3Q5ev6mZv77QPqOD0k52BQ8X0tV/ddL+l0fTtPdqmrZF07QtPT2zO+DhpOCuhaJiKGua7SsRYlosqHaxurE0Zbttpzd4Sg4WMp21qJIiiza2ViXpwf+AhvVgsTFatYyB4VFq3Hl+rewucNdPbLXt3gt6DBrmXsUT4MxFqv33mUMJ5zwtFnXWs/1Z6Ng6o9fT2uPnYE+AS1O02QI0lBVT5bLnFDwHh8P0B8IsqnaroUn/+BD8+Dx1znfheXDJ5+FNf4aP7IFPHuHuTT/nw/63EFj7Nmg5S72psPwVsOM2iORXuTrcFyCmw+JJpuqe0aLeHJ3OdSG/e+Yo5U4bV642Khb+HvjXJ6FpM2x6d9avc/XaBs5dUs0NOxYysu7t8OQP4MW7C76+A8ZE26XmRNs/vxN+cRUMjwXNjfMr2HpkcE4EuIH7v0uHXs2F178n6X67u4LGd/8Brv4e59r3cW/JZwjsfYDX3vwUV37/MXa2z51W4enSMTjCf/1pO6vmlfLfV62I3z+/ysX65nL+vm1mg+cTxpGLJ1p7OT40s9XWXEWisTnx/T3e3TuPs3lBJbWe9P+ffM95i4jpcMvjCW/CBvrgwS+rW5GzfINnl6ZpDQDGbdpav67rP9F1faOu6xtraqZmZ9spzeGBDzytVgUIcZK6eu08trUN0tY/HL9vOBzBF4xQXzZxmMmpwlNs44yWionnPAGsRfBvv4M3/oG+oPpPe7UnzzOeoKqo/eMGK3QaOzHnaMVzQZWTWo8j+ZwnwPo3gt0Dz/xkRq/n/j1dAFy8InXw1DSN1Y1lOU22PdgbwEaEC/r+AD84A174rQrWH3werv8JnPthWHoplDWCprGmsQx9fDvv6W9RLbkv3pnXnyu+SmWSimeZ08bSWve0rQvp8YW4Z3cnrz6jiWKbMbn5X5+EcACu/UFOe641TeNz165iZDTK50JvgoZ1cPv7YeBIQdeYNNG27TlVTQ374On/iz/njPkV9PpDHE34b91s6Nj9JAsD29jR+AYW1pZNfIKmwcZ3YHnvQ3jKq/ip9iXuWv0w3YMBbn7k5B7AMhqN8Z+/f4FoTOdHbzxj7PvNcO26eew57uVA98ytoHmitY9F1S50HW5/Ye6dMY3GdB7d18OH//ACqz93D1/954uzfUlJ9nX5ONDt5xVrU7fZmpornVyztoHfPXOUweEwjAzCb66DR78Bj3xtRq71ZJNv8LwDeJvx67cBf5+ayxFZqVwIRQX8QCnEHGe2296V0G47tsPz1G21BThvaTW7jg2lPmdV1ghLLqHHpx6rcRfwtapcOLHVtnMnOMqgPHML42xIe86zuBROfxPs+gv4umbseu7f28XKhlIay9O/WaIGDPkJjmYxYEjXCe78B/faP86y7V9XFcx/fwqu/Bo4K1N+SMp23kUXQlkzPJ9fu+2Bbj+aBotT7PBMtHFBBc8fGZiWoTR/3tpOJKbzhs1Gm+2Ld6t/v+d/AmqX5/x6S2rdvPu8Rdy2rYcdZ39fnRG9/QMFrRPZ3+3DU1xErccBT/9I/d1ZeplaU2JMit1onPPcMsvnPI//65v49BI2Xv+hyZ9Ytwre+zDa+jex6sBP+GPJV2g7enKfgfv2vfvYemSAr1y/hgWJZ6uf/zXc8xmuWebEosEdM1T17PWH2Hvcy6s3NLFpQQV/fb59zlQUX+z08pW793L2Vx/grT9/lkdePM5niv9K1zN/JhCavvPeubprh2qzvSJNm22i9798MYFwlN8/tgdufY3q/Gk+C7b+EoY6pv9iTzLZrFP5PfAUcJqmae2apr0L+BpwqaZp+4FLjN8LIcSUaK50sq65nLt2TAyedadwqy2oc566Do8fSFH1NPT41deqoLUzlYvA3wWhhIl+x3eoamc+K1pmyJkLK+nyhjjSN66CtPm9EBtVPyzMgD5/iK1HBlJOs020urGMaExnb6YBQ1274dev5GXPfZCoVkTkDX+CN/1JTe6dRF1pMTUeB7sS17ZYLHD6m+Hgw2rabY4OdPtpqiiZUPkZb8P8SrzBSLzyN1XMoUKbF1aqqmtwCO76KNSthnMyBKdJfPCiJTSWl/CJB31EL/wMHHlctTDnSU20daMNHoU9f4eNb4dLPgchb3yy8LJaDx5HEVuPzl7w3LN3N+u9D/NS4/XUVGfRmWZ3wXU/gut/yoLQPt45fAvdvpPzDNxDL3Vz8yOtvGFzC9eumzf2wPEdaojVUz+k5tfn8ZGG3fx9W8eMBMAnW1WL5zlLqrn+jCb2d/uT/37PsG5fkJ89dpCrvv8YV3zvMX7++CHWNpVz0xtWs2X573jL6B/5Lt9mx12zc84+lbt3HmdThjZb0/L6Uq5YVsqmp/4dveN5eO0vVXeJHoPHvzP9F3uSyWaq7Rt0XW/Qdd2m63qTruu36Lrep+v6xbquL9V1/RJd1+fGyXghxEnj6jUN7OwY4rCxs7DTa1Q8T/HgubqxjHKnLXW7rSFe8Sw0eAIMGOc8Y1EVfubo+U7TWYtU5S/pnCeo1uGll6n9jpHpX/j+0Es9xHS4LGPwLAUmGTAU6FU/4N58LnTu4LaaD/L/27vv8KjK7IHj3zsz6b0C6RVCCYQQCL3ZaIIgVkRRV7H3sm6xra6rrmv52RfbKgrYEUGlKUXpJXRIQm9pENLb3N8f7wRSZlInJCHn8zzzJMzce+dmeDOZc9/znnOn+xuYul3a4HPpFeRZ+/iVyzU2z27wcSqlZRbUO9sJav0iYPfiOavTsjiUU8i0yqJCP/9VXSSZ+H/NygZydTTx9wk92H0ij09LRqp1zr+91OTjpWbk07WTB6x7HzTLWuNOPaH7RBV4Fp3CYNDoG+7TapVtdV1n/4J/gwZxkx5t3M69r+ZU7BQuNWxkW/qFN/NzIreYh+dtJa6zB09d3uPcA+Wlajbc1Q9u/B48unBvzvM8lfcMu3Y1r1p0Q6zel4WHs4n4YC/GxXfB0WTg6012aANUXgqfXK5aEVXUPTt5priM+VuPMeOjdQx6YRnP/bgLk1Hj6ct7sPYvFzFrWjxjdzyOcfcP6Bc/w1aH3iSn/A29iVkW9rTvZB77MvJtVrOtpbyEF8tfJFHfxYqez0H3CapwWd8b1Ky3nVswXeiaXVxICCFaQuXai8p027OBZwdupwJgNGgMifFn5b5Mm1fXs/JVYOXfrFTbGi1VslNVq5Y2ur6zUnSAO/7ujrXXeQIkz1QBys7vWvw8Fu88QWdPZ3oGeda5XbC3Cz6uDtZnLHYtgDf6qg83lnWcH5VdSliAlTV4dbDaL9Q7FKJHqTWi5ob3Ea0w66Rn5hPTgMAz3M8Vf3dHuwdVX6w7hI+rg0qT2/yZqtA75H4ITmz2sS/r2YmR3QL497KDnEm6W814Hljd6ONk55eQXVBKd19g4yfQc7JKhQcY8bhl1lPNACWF+7A3I4/covPfa3bVjnSG5y/iUOdLce8U2ej9PQdMw1UroWBb09YLt1XllnWdxWUVvDWtxrrOVf+Bk9tUu56okfCnpRSNfo5kwy5ivroYVr9Rb+DWVLqusyo1i0FRfhgNGl4uDlzSoxPztx6jrMJc/wHqsm0e7F8Bq15VKaVVimCdKijl5x0nePaHnYx/YyUJz/zCfV9sZs+JPGYOj2LJQ8OZf89QZgyJxM/JDHOuh72LYPwraEMfYNfI91lV0Qvm36vez1pRZTXbsQ1Is6WiDL6cgdexlbzrdT9/SY079zoPe0Sl4q+UWc/GkMBTCNEmBXm70C/c52x125O5xXg6m3B1NLXymbW+4bH+nDxTYjOFMTOvBA9nU72pkHXyqdFS5cQ29bUN9vCsStM0BkT6sna/lcAzajT4xcLalk35Ki6rYMXeLC7uEYhWT1qyzQJDZ46pWRXfqLPrOM3OPuzPKiDSVg9PG3pa+oXuOlEjuO07Hc4cgfTlDT7W0VNFlJSb6ywsVEnTNBLDfOyaRpqRV8wvO04ytV8ITie3wIKHIHIEjPqbXY6vaRrPTOxJaYWZ508MBLdA+O3FRh+nsgDTkLxFqqDQwLvOPdi5F3S/3DLreZqkcB90HTad53Rbs1ln14K38NCKCB3/eJOO4RQ5mExDAKGHL6zA8/Wl+1h3IIfnJ/eqPrt/PAVWvAzxV0PcOHWf0YTL8Hv5R8TH/KHHw+K/w39HtkgV7UM5hRw9XcTQWP+z912ZGExOQSm/7WlG5wizGVa/Dp3iYeL/oR9cTcFbw3lzzvdc9uoK+v5jMTM/3cjstQfxcDZx7+hY5tw+kNWPj+axMXHEVFZuLi2Az6+G1KUw8c2z1aUvT4rmfu0x9rgPUMHnho+a8zI0y8Jtx+kf7ktgfdlT5gr45jbYsxDG/Zu4cXdx9HTRudY53qGQOF0F0qcPt/yJXyAk8BRCtFnj47uw6/gZ0jLzVSuVDj7bWWlYrFqHtWKv9Q8azerhWcnZE9wCINtSsfL4VtX/MaBb8457HiRH+nH0dFG1qsiAWtuYPFN9IDyyocWe/4+0bIrKKrjYRjXbmuKDvdh7Mu9cgSFdV+m1FaVw1Udn13Eey1VBX1QDZhtrHh9gR83gNm48uPg2qshQaqaq3NmQwBNU8ZyD2YVn07+b68sNqqjQtF4uMOcGcO8EUz9SVZ3tJNzPjan9QvhhZw7lg+6F/b/BoTWNOsa+jHyMVBCx738QPqT2bOyIx6EkF9a+S59Qb4wGrUVbz1gzf/NBxhV9T5Z/fxxCmzhbbDCw2/9S4os3UJFnn5Z5H63ezzf2SB1tolX7snhzeSpXJ4UwuW+V1nUVZepikIsvjK19MWJ4Ul9uKnqAXcPfVinysy6GRY9Dif2q3Vau7R8cfS7wHBYbgJ+bI99sbsZrtvcnyNrLQq9rGL08jCmFfyUvP59bdt3GeNNaHrm0K1/eMYiUpy9lzu2DePCSrgyM8sNgqHJhrSQPPpsKB1bB5PdUUGbh4ezAmIQIrs69m7Koi2HBA7B+VtPPt4lSM/LYezKfcfH1zHaazfD9PbDjW7jkHzDgNkZ1C6RbJw/e/S3tXMG0oQ+prytfadkTv4BI4CmEaLPG9+6CpqkKdCdyizt8YaFKQd4uxAS6s8LGOs/MvJLmVbSt5Bt9rpfniW0Q2B2MDs0/bgtLPrvO08qsZ5/rwMlTVRZtIYt3ncTN0cigaL8GbR8f7EW5WWfPCcsH1JR56oPgRU+eS3kG9lvWOzd2xrOLlzO+bo61Z1VNTtD7Gtj9Y4N70qVlqHNoyBpPUAWGADbaYZ2n2awzZ/0hhkR6ErHsblUZ9trZ4Naw17kxLu4eSGFpBWt8J4Grf6NnPVMz8pnouBFT3hEYdHftDTrHQ9wE+ONt3Mz5dO/icV4r25aUV7Dpp08I0bLwveih5h2r+5WYNDNZa+c2+7yKyyp4YdFuHpq3lf/9caDZx2uszLwSHpi7mZgAd56Z2Kv6gystKbaXv2a1ivTouEDcnRz4OCce7l6rZvvWvgdvDlBp83bwe2o2nT2dq/XQdTAamJgQxJKdGeQWNjFde/VrFLmFcG9KOIEeTlw25nIyr/sZ59De3Jf9HPfoX9A/zAsnk40smqLT8Olk1TLoyg+gzzW1Nrl+QDhnykx8EflP6DoWfnwY1v23aefbRD+mnFBptnWt79R1WPgwbP0cRv4FhtwHqGyIO0dGs/dkPst2W7pIeodC4o0q5b8Jhdo6Igk8hRBtVidPZ/pH+LIg5Zia8ZTA86xhsf6sTc+22oYjM98OM56ggp6cdPWH+ERKm1/fWalroAferg6sTbcSTDm5Q/xU1cOy1P69E81mnSU7TzKiW4DtD2k1nG15cixXtXtZ9BiEJqvZ2SoqA8+qHzobQtM0egZ5Wl9HmjhdVftNaVjQkJqRj5+bIz5uDSvi0yvYE0eTwS5B1arULA7nFPEP17lwcLUqJtRCxa4GRfnjZDKwJDVfffBMW6Z6cTbQvow8Zjr+pH6Huo6xvtHZWc/3SAr3Zcvh081fp9dAn/5+gCtLvqPQMwpDNxvn10BRPQewxxyCYcdXzT6vzYdOU1puJsrfjSe/38Gna5rXS/Usc4WaxarHMz/s4ExROW9NS8TFscrv74ltqndj/FUqU8AKZwcjl/bsxMLtxykxucO4l+FPS1SQOncazLsJ8ps+K2w266xOy2JIjH+tFP4rE0MorTCzYFsTWroc/AMOr2VWxTjC/T359NZk7hgRTXxcNwwzfoR+M9SM3ufXqACzpsIc+N8kOLYFrv4f9Jpi9WniQ7zoE+LFp+tPoF/9CXQbDwsfObvW+XxYuO04SeE+ti9i67oqVrbhQxjyAIx4rNrDE3p3IcTHhbd/TT1XY2HYw6rSu8x6NogEnkKINm1C7y7sPZnPyTMlkmpbxfDYAErKzVY/0GfllTSvsFAl3yjIO6aCz8Js6Nyn+cc8DwwGjQERNtZ5AvS4AsoKIXWx3Z9729FcMvJKGpxmCxDi44KXiwPbj5xWbUHKimDSW2CoHrimZxbg5mhs0kWFWum8lTr1hOB+qkBPA1pBpGbmE93ANFsAJ5ORPiFebLBDGunnaw8x3eV3otI+hYF3Q++rmn1MW1wcjQyJ8WfZ7gz0pFtUBdNGzHo6H99IXPlutbbTYOMCRJfeatZzzVskB5koKqtg93H7pWXacqa4jN+X/0AfQzquw+9VKejNEBngzk+G4QSc2gynmhco/pGejUGDL+8YxMXdA/n7d9v5fG0zZ5KKTsH7I1Rl6KxUm5st3XWSBSnHuXd0jKpGXKmiDL6705JiW3eV40kJweQVl/Nr5XrLkCS4/VeVvbBnIbydrPrNNqHtys7jZzhdWMbQ2Noz/D2DPOnayZ1vNjWhuvDq1ylx8Oat04N4bEw3HIxVxoPJCS5/HSa8qtov/Xc0ZOw+93hBlqqEm7ELrv1cVXytw7TkcPZl5LP+cIFqSxI3AX56HP54q/Hn3UipGfnsOZlXdzXb5c+rnrsDZqrWRzUCfJPRwO3Do9h06DRz1lvWdXoFQ+JNatazmeO/I5DAUwjRpo3p1ZnKZSQSeJ6THOWLo9HAin3Vr6AXlVaQV1JupxlPS4Ghnd+rr+1kxhMgOcqPQzmFHDtdVPvB8CFq/eqOb+33hMW5kJ/Bkl0nMRo0RnULbPCumqYRH+yF1/4f1UzsqL+Af2yt7dKzCogKcK+3YJE1vSzpvHtPWgls+k6HjJ31FkPRdZ3UjPza6zt3L4QPx9qcEUwM92HHsVyrs/MNlXGmmOO7/+BJ/gsRw+CSZ5t8rIYaFRfIoZxC0nI1GHSPulBxpP6CMbmFZUwp/Y5ikyckXF/3xiMeg+JchmSr2cJGt57RdShv3PrZ935L47ry+ZQ7+ajU82bSNI2DQWPVP7Y3b9ZzTXo2vYK98HN34q1piYyOC+Qv325jzromBp+lBWqmLnMP5B2H90fCzvm1NssvKedv322nWycPZo6Irv7gqlfVjOeEV62m2FY1JNoPPzdH5m+tMvNodFCzYjNXqqJtX90Cc29Q2Q2NYG19ZyVN05iSGMLGg6fOtiBrkIxdsHcRn1RcRo+wTlzW08bax6RbYMYCtY5z1kUqdTjvBHw8XtUBuH4OdK2/xdOEPl3wcDYxe+1B1froqo+hxyT4+S+qGnALWlhZzdZW4Ln6DVU4KvFGGPMvm/2qr04KZVisP098s41XF+9VM59DH1Qtk1b+uwV/gguDBJ5CiDYt0MOZ5Eh1hVdSbc9xdTSRFOFTq8BQVr4denhWqlxfeDbw7GV72zYmOdJGP09QhWi6Xw57f7Zfuu1Xt8Ibfcna+hNJ4T4NTkWt1D/QzO15b2MOSlRBjhXpmfmNXt9ZqbLAkNV0215XgoNrvW0OsgtKyS0qq95KJXOPqvx46A/48DJY/kKtVhJJ4b6UVeikHLHRq7QB5v+ewlumV9Hc/NSHVTsWE7JldJy6eLB8dwYMuA1cfFS6ZT0Ope9kjGE9J2KvBcd6/r+69IFu4/Hc/B6xnhWNmxkuOo3+6RTML0XD2vcb1Bbn5Jlilq5azUXGTZiSbwMHl4Y/Xx1CI+PYYO6KOeXLJh+juKyCLYdOMzBKvd87mYy8c0MiI7sF8MS325i3oZGVQ8tLYd6NcGS9Wnc4c4Uq1DVvOvzyt2rj9OWfdnPiTDH/ujIeR1OVj8Yntqterr2m1jubB2pGbHzvLizZeZL8khotVQLj4NZfVLGafYvhrQGwdW6DZz9Xp2YRG+huM030ioRgNA2+2dyIWc/Vb1BmcObtwtH8ZVz3ui9qhQ2Emb+pAnNzp8G7w1Q11xu+gujRDXo6V0cTVyaGsGjbCbLzS1RQfuUHqt3Q4r+rIL+F1Jlme2gtLHlKZcNMeK3OLABnByMfzujPlYkhvL50H499lUKZexeVkrzlczh1oIV+gguDBJ5CiDZvYkIQAKG+rq18Jm3LsNgAdp/II8PS4xQgI68FAs/jW9T3Th51bt6WdO/iiYezyXo/T7Bvuu3pw5C6BHNFOc/kP8NM382NPsTUjNdxp5DUQS9aDaqKyyo4erqIqEau76xUmc5bq8AQqArGPa6A7d+oGSIbKluEnE21LT4Dc6ap4OXutdD7avjtXyoArayGDPQL9wGaMJtnYS4vo++6BwnUcjFd/zm41Z7xaQnB3i7EdfZQhUScPFSRoL0/qbVsdXDY8D5mDDgOuqNhTzTycSjO5X7P5Q2vbJudhnnWxVSkr2BLcSdY9ChHXhrIb8sX1VlB+LUl+7iRhWhGRxVM20lCmDffVQzBkLlLBWtNsOngKUorzAyKOpdK6mQy8u4N/RgWG8DjX6fw1cYGVm41m1V6bOoSFUj0mKgKwdy8CJJuhd//T61LzDvJxoM5/G/NQW4aFEHfMJ9zxzibYuut1ms20KSEIErKzfyy40TtBw1GtWb4ztUqgPv2dvjiWjhzvM5jFpdVsP5ADkNibI/9zl7ODI3x55tNR85VXa1L7lH0bfOYVzGS/j1iSIqoezYXAM8gmLEQ+t4A5nKY/g1EDK1/vyquTw6jtMJ87v/S6ABTZqngfsnTsPHjRh2vIdIy89l9Io9x1mY7i8+oi2deoWrduK3U+CocjAb+fVVv7rsoli83HuGWj9eT3/9e0IywQmY96yKBpxCizbs6KZS5tw+svu5GMMzSy60yBQs4+6HTLlVtXbzV2jZo8/07azLWt87Tnum2KXMAnR+SPmazHsvoHU80rmDGrh8IPrKIN8qnsLHIeqrbwexCdL3xFW0rqX6hnuw4ZmPWMXG66je54zubx6gMPGMC3dUszfd3q/W/Uz9SH6Inv6u+z05VsyEbPwFdx9fNkagANzY2scDQ0S8fpZ95Ozv6PQtBfZt0jKYaFRfI+gM5nCkugwG3g7OXmgGzpTiXyEPfsFAfROeQKNvbVdWlD3QbxyWnvyIvN4ej1tLDqzqwCn3WRRScOsENpU/wc/KnvBf4dxyLMxn263X88uJ1TH3lR575YQdLdp4kr1hVOk3NyGfxhh1cZVqB1vtqcG94Onh9EkK8WViRjBkjbGvarOcay/rOpAifavc7Oxh5f3o/hsb48+hXW+tvtaLrat3g9q/UOr1+N517zOQEE/6j2n0c3Yj+3nA+nTuXIC8XHrmsRquoVa+pomoNSLGtKjHMhxAfF77fUkehH/9YFQRf9gKk/6bWfm6ebXP2c9OhUxSXmesMPAGmJAZz5FRRw2bO17yNbtZ5t3Qsj49pRJssB2e1Bv3RNDUL2khdO3kwIMKXz9cdOhcgG03q/yTmEtWbN3Vpo49bl4WWfuBje1kJPBc9BrmHYcr76iJcA2maxkOXdOXFK+P5PS2bqz4/SGHv6WrWs7IavKhFAk8hRJtnNGgkR9UuqNDR9ejiiZ+bY7V0W7um2sK5Wc92tL6zUnKUL/uzCqrNCJ9lr3RbXVcfNCKGMe+oD097PXeuYMaSZ+pPoyvMgQUPoXfuzecOk63PSAL7syyzjY3s4VlVryAvdh/Po7TcSnXPsEHgF6OKDNmQmpGPq6ORIC9nNWO0az5c8gxEDqvyJFPgzt9VUZUf7lMzogVZJIX7sPHQqYbNxFSVMo/QPR8xRxtLz7ENnEG0o9FxgZSbdVbuzVJB58C7Yc+PcDzF+g6b/oeTuZBlPlOr9zisz4jHcSo/w03GX9hwoI6Z4c2fof/vCk6UuTOh6BmunHINT4zvwcy7HsHv8a1k97qF60y/8mHBnRSt+x9/+t96Ep5dzOS3V3P/nM3c5LAUB73UZjp3U/m4OeLp15kdLkmw7asGVZCtaU16DvHBXng4127ZpILPJAZF+fHIl1v5fksd6aS/vQjr3ofB96rKpNb0uRb+tITccgdeLvgrH3ffgHvVKrYnd6jj9LpSvU80gqZpXN4niFWpWSqd1BaDEQbdpWY/A3vC93fB7Ksgt3Zg/XtqtuXvYN0B8GU9O+PqaKw/OC86hXnDR/xgHsjQ/onEBDbhom4zilJNGxjGwexCVqdVaQlmNKm+xYHdVQXgkzuafPyafrSk2daqE7H9a9j6BQx7pElBNMA1/cP44KYkDmUXcO2OgZgNJpn1rIMEnkII0U4ZDBpDY/1ZlZp19gN9Zl4Jmga+jVxjaFNl4NmlfVS0rapybfCalqxue2gN5KRT2OMa1qbnMKJHqGop0G8GrPoPzL+n1prHan56Aopy0Ca9RVywH9ttBJ5pmSoFNqKJM56gCgyVVpjZl2GlwJCmqSJDh/6ArH02ziGf6AB3tAMrLeuhJlkPYLyCYfp3cNk/1Wv79iAmuOzgdGEZ6ZYAukGOb0Wffx9rzXEcTPpr9bV350nfUG+8XR3O9e1Lnqn6wFpb61lRDmveZaPWC0NjZ2aDEjDHjuF2049sT7cSNJjNsPhJ+P5udjv15rL8v/OnSRdzVVLo2U2MLl4EXPUfDHf8hmdwHP8yvktK2Ks82V9HA9JPZHOr4xI1qxQY17jza4C+YT7MKx0IZ47A4TWN2reotILNh08xsI7ety6ORj64qT/JkX48OHdL9QI+lda+D7++AAk3qLWUdaxZ3KeFMzrvKXZ5DCR28/Oq6E9JfvUU27ENT7GtalJCEBVmnYXb6k6hBcAvGmb8qJ7r4GpVfXf/imqbrErNok+IF55WgvKqXB1NjO3VhR9TjtddzGv9BxjKCvhQn8gDF3dtyI9kV2N6dcbXzZHZa2oUjXLygOvnqbZXs69WBYyaKd1Wmm3uEVjwIAQn1Wqb0lgjuwUyd+Ygjus+zK64CH3rFyobRNQigacQQrRjw2MDyMovZdcJVTQmM78EX1fH6iXxm8MvRn1thzOePYM8cXcyWe/nCfZJt90yGxzcWGZIptysc0mPTmomY8Jrqk/j5s9UIQ5rs6p7f1ZpukMfgi69iQ+2PSO5P6uAQA8n3J2aXlTnbL9QG8Etfa5Ta5RsFBlKy8inn08hfHmzGheT3rL9wd5gUGsib1sObv4MX38nz5g+Yku6jfTDijLIPaoq6+5eqProzb2BfIMnd5fezzXJDUxbtTOT0cCIrgH8uidDXdxx8YbkO2DXD7VnZHZ9D2eO8HbJZbUr/zaAYdSf8dIKCNn3WfUHSvJVFdTVr7PaexKXn7qf+8b3Z/rAcOsH6hwPN/8EE9/EMy+dm1Km8030QrZPOIZrWQ4Mtu9sZ6WEUG++LuiD2eQCKfMate+mQ6coq9DPFhayxcXRyAczkugf4csDczazIKXKeEr5EhY9qvpDXv56nUGn2azz52+2YXbyImjm13DRU7DzO9UuZNHjcHwrjP8PuDUt0yausyfdOnnUnW5blcEAybfDHavAvRN8Ohk2fARAblEZKUdOM7SeNNtKVyYGk1dSzuKdNqrmlhVR9vs7/FrRh2FDR9nuadmCnExGruoXwuJdJzlZMyPFKxiun6va4Hx+TZ3rzhuiMvgfG19lGYO5Ar6ZqS4WTXlfrTNtpl7BXnx712B+cL+aErOBQ9890/CddV1d8GtCpkB7I4GnEEK0Y5XrPFfuUylLmXkl9kuzBej/J7huLnjYKLPfhpmMBvqF+9he59ncdNvSAtjxHXrPK5iz5RT+7o4khHqrxzRNtUUZ9291/E8nq7TaSsW58MMDENgDhj8KQE/LjKS1lifpmflNLixUKdzXFQ8nk/XKtgAenaDrGJV6VlFW7aGCknKycvO44+QzUF4M13zWsGJTnXvBbcvRB97FTabFDFs2FZY+C9/dDZ9dCe8MhZdj4B8B8GoP9cF/znWw4EH04lwe5CHiYqKbNdPbXKPjAskuKGXrkdPqjoF3gqNH9bWeug6/v0mxZyTLzH2JbULgSVBf0nyGMrHwG/LPWNbo5R6BD8eg713E/KAHmHbiau6/pAd/GlZPIG4wqHW7925UhWD+eBPjL09Ap3iIHNH4c2uAhFBvCnHmeOfRKogrL23wvmvSVSpp/wYUuHF1NPHhjP4khfty/5wtvPzzbkp3/QTf3QHhQ2Hqh/VWPZ699iAbD57ib+N74O/hAsMegunfqn7FGz6AnlNUQaJmmJgQxIaDpzhyqhHvLX7RcOtiiBoFCx6ARY+zLvUkZh0GNzDwHBjlR5CXs810W33LFzgUZ/G5w2RmjmidCzoA1w0Io8KsM7eyH2ZVXfqotNsTKapieAMqNtvy47YT9Av3oYtXlQrOv78BB1fBuJfUa24nIT6u/PeuCSxxn0DQwfnMXrhctVupwmzWyS0s41BWAambfuPI3IcofKk7vJlE6fKG9wpuryTwFEKIdizQ05m4zh5n13lm5ds58HT1hW5j7He88yw5ypfUjPyza19raU667a4foDSPZc4Xsyo1i7tHxWCsua5vwG2q/cexTfDRWDWrB/DzXyH/hJo1NKm06MqWJ9YKAO3PKiDSv+nrO0GlZvcI8rS5jhRQwUpBpgqWq0jLzOdvps/onLddnXNA44qRaGNe4JXOL6rXetVrkLZUNZ/3CoG48Wp2eMKrcO0XcNsyeHAnv038gyVnQrk+OaxpP7CdjOgagEGztFUB9TuRfLtqM5SxS913eC0c28SOsGnoGIhtYiG00wMexkfLJ2vpm2r297+j0U8d4PPol7kvfQB3jYzhntExDT+gqy9MfANuXQIxF8Olz9Y5E9gc3bt44mgysMpllJqtSmt4gZg16dnEB3s1eEbfzcnERzf3Z3LfYP74dRHmudMp8ImD675QxW/qcDy3iBd/2sPQGH+uTAw+90DUSNVyZfhjMP6VBp+7LRP7qGrsP2xtQLptVc6easZv4N2w9l0ifrmFQIdi+oZ5N2h3g0Hjir7BrNiXRUZejdlEcwVFv73GFnMUg0dPsrqe9nyJ8HdjWKw/c9YdosLa2u+ul8HYl2DvIvV+2QRpmfnsOn6meprtsc2w7HnoPhESpjXx7G3zcnXgktv+idnggPMfr3DFW6uZ8H8rGfbSMno//ROT/vYmX/zzZrQ3+hAzfyKBOz/m9/zOrKroiXHVv8+9p1ygJPAUQoh2blisPxsOnKKwtJzMvBL87VHR9gJRuc5zXUtUt90ym3LPcO773YVBUX7cNCjC+nY9r4AbvlZB5weXqnVomz+FwfdBcOK5U7HMSNYMDE8VlHKqsIzoZs54ggpudx4/Q25RmfUNYi4B9861igyVbpzNjabFnEqYqX6eJnCNu4SBRa+R/eAReHi36gl4/RyVFjnqCdWkPm4cBPcDr2A+W38cf3cnlb7cirxdHekX7sPSysAT1NpWB9dzRUT+eBOcvVnmdBGOJgOhPk3rjxnbdxhLK/rSZfs78NE4MDnxcff3+Ov2Ltw8JIJHL+tWd69FW0L7qzHYwH6LTeFoMtAzyJNvz3QDF98GV7ctKq1gy+HT9abZ1uTmZOLfw03Mdf8PGZofI47dzdO/HKagZv/MKnRd5+/fbafcbOafk+Nrv5ZewTD6r42qYmtLqK8riWHedRdCssVghDH/hIn/R2TeBr5zegqn3AMN3n1KYjAVZp35NVJ9K3bOxzX/IF+7TOX6gRGNPy87m5YcxrHcYn7dk2F9gwG3WQLwd2Dte40+/iu/7MHZwcDlvS2BZ2khfH2baslUTzp2czh5B+GQ/CcmG1cTYj5GouNhnnT5iuWOD/GD49+43WERpk5xbB/wL7Zdv4nQu39gbvjT5OkumL+/p1kzvG2dBJ5CCNHODe8aQGmFmbXpOfZPtW3neod44eJgtL3Os6nptqcPwf4VfG0ejqYZePmq3nVXMY0cDjf/CBWlah2af1cY+US1TQwGjZ7BnmyrkQqbnqXWODW1lUpVV/QNprTczOy1B61vYDRBwnWw75dzvQWPp9BnyzOsMffAffxzTX7upAgfdAxsPKx+PrNZJ6+4jGOni9h94gzrD+SwdNdJvtt8lA9X7WfZ7pNclRRiv/XKzTAqLpAdx86cW4/m6qs+FG//Gvb+ArsWQNIt7MwqJ8rfDVMTz9nT2YHvvW7AoaIQuvThg7hZPLNWpSU+OaFH04LO86hvqA9bjhVQ0WOSWqtbYqWQVQ0bD1au72xgsGc2q/W1a96BT6fg4OyO352LGD+wNx//foDLXlvByn2ZVndduO0ES3Zl8NAlXQnza/m+0JMSgtl9Is9q+nxDnIi+mmklf8FXy1Np6DWKDtkSE+hBnxAvvtlUJejVdXIXv0y6uTMDxt7YKsW6arqoeycCPZyYvfaQ7Y0u/YelUvifYc+iBh/797QsFm47wV0jYwisXMf6y18he59q/WSHiwt10YY+gMHkxFt59/Ps8Tu5JGcOfqHdYOKbGB7dR5e7F9Br3J306xZBt84eXDMikadLp2M4ugHWf9Ci59aaWn/UCSGEaJb+Eb44mQws3HacknKzfXp4XiAc6lvnCU1Lt93yBQBvZCXx5OU9CPFpwIfYLn3g1l9UiteU/1pNCYwP9mLX8TOUVZwrMrHfEnhGNaOVSqVewV4Mi/Xnw1UHbFe97DsddDNs/VylTM69gXyDBy97PI6DQ9OrJccHe+Fg1Hj4y630fvpnYv66kPinf2Hwv5Yx5rWVXPXuH9z6yQYemLuFZxfsxNnByPUDWjfNttJFcWrWdXnVWc/B94KDC8ybDgYTDLidfRn5TU6zreQRnczl+qvMin6Df/yaxZS+wTx/Ra82H3QCJIR5U1xm5mDQeCgvUsFnPSrXdybZWt+p65C5F9bPgnk3wr9j4J3BKhBx9oTp3+AWGMkzk3rx5R2DcDQamP7BOh77amu1mf3cwjKemr+DXsGe3DIk0l4/cp3GxXfBoFFr5rGhVqdmsVbvzqErf1Dr7D+drApvNcCUxBB2Hj/DruPqQk9p6q/45u5gkedUxvcOadL52JuD0cC1/UNZvifD9lpYg1G9X3ZJUJWHj22u97jlFWaemb+TEB8Xbh9uWce6Z5F67Qbdo9KqW5p7oOojGz5Yza4+sk+tI06cbjXoHRLjxw6/y9jo0A996TNw2sra1wtA08vjCSGEaBOcHYwMiPQ9W71PZjyrS4705ZXFezlVUIqPtTYzVdNte0yq/4BmM2UbP2ODuSfdu/fkqn6N+BDnGwnX2O6V2SvYi9JyM6kZ+XTvopqZp2fmYzJohDQxfbOmO0dEc/2stXy96QjTkq1URvWLVkVaNn2q2sWcOcaTzs/h16l5H1adHYw8PiaOncfO4OnigIezCU9ny1cr//Z0dmgTszIAXTu5E+ztwtLdGVxbGQy7+UP/W1VP097XUugcwJFTm7i6SouTpkiK8GH22kB2/JTGuPjOvDS1ntn0NqSvpbjW6tIYorxCYds86HNNnfv8kZ5N75Aq6zt1HU7th/0r4cBK9TXf0lbDMwRiL1UZBBHDwLv6a90/wpeF9w/j9aX7eH9FOr/uyeQfV/Tisp6d+efCXZwqLOXjm/s3eUa6sQI8nBgS48/3W4/y8KVdG33xYHVqFr5ujsR0jYeIxSrwWvAgZOxW7YrqKKJ0eZ8g/rFgJ99uPkr3Lp6cXPQizroXiRPvalPj6ZoBYby5PJU56w7zyGU21o47usJ1c2DWxarS7Z+W1vq/r2r22kPsOZnHuzck4uxghLyT8P3dqrjWRU+20E9ixcA71K0BNE1jxtBI7vv2Rla4P4Hxx4dUa5l2cMGpMSTwFEKIC8Dw2ICzlW1ljWd1yZa1Y+sO5HBZTyvVeSvTbbfOUem2jnXPXpYfWI1D3iEWGu/lhSm97ToTVdnyZNvR3LOB5/6sAsL8XO2Wcjoo2o8+IV68vyKda/uH1S6IBOqq/Lcz4dR+Ksa+zKLvQ7i9d/NnXOutxtpGaZrGqLgAvtl0lJLyCpxMRvXAkAcgKxWGP0pahpqZblJF2yr6R/hiMmiM6BrAa9f0PW9Bkj2E+Ljg5+bIlsNnmB4/FVa/AfmZ4B5gdfvC0nK2Hj7NbZWzUqcOqHY9xzapf7sFqiAzcpgKNH2j6v0gXnmBY1yvLjz2dQozP93I0BjV73jmiKizv2Pny6SEYB75citr0nMYVEef0pp0XWdVahaDo/1UoFhZdOiXv8Oat1TK6Oi/QadeYKr9nu/r5siouEC+3XyUu+IKCM35g698bmFq12Arz9Z6gr1dGB0XyJz1h7n/4ljb73MenWDaPPjgMhV83rIInGv/X+YUlPKfxXsZEuOn3u91Hb6/S1Uhv3KW1deqrZjcN5gXF3XhW5+bmbrvLdj2FfS+qrVPy67az7uZEEIIm4Z1PVdqX2Y8q+sT6oWTycDadPuk2+7+6T3ydBeGTbzZ7q91pJ8b7k6mar020zMLiLJjOxFN07hzZDQHswtZtN1Gxc3uE9XsUt/p7I+4lnKz3qTelBeSi+I6UVhaUX0cufmrAkn+MezLUOv4mptqG+LjyrKHR/Lu9H5tZsa3oTRNo2+YN1sOn4L4q0CvUK1VbNh48BTlZkv/zrTl8P5IyEmDMf+Cu9fBI3th6gfQb4aaiW/ERZ74EC/m3zOEhy/pyrr9OYT7ufLARV2b/TM21phenQnycubRr7ZyurDhLWbSMvPJyCthSNU2KlWKDrF/pVr3+c9g9boteEj1DT6582xxmisTg8nMKyFl7rPk6870nvyQnX86+5iWHE5Wfont3qOVArvD1Z9A1h54KRpe6w0fjYdv74Blz8HGT/j+608JKDnE02Oi1EXBde9D6hK49DkIjDs/P1ATuTqauHZAGE8cHUxp50T46XEosFGfoJ2SGU8hhLgAdOvkQaCHExlSXKgWJ5ORxDAf1u6v4w94A9Ntt+8/SuTJX0jxvohL+9qv/1ulmi1PzGad/dkFjOhmfcaoqS7p0Zkofzfe/S2N8fFdas/aOrrCfZvA5ETqdpXmGG2HNabt2aBoP5wdDCzbncHwrrX/P/Zl5ONg1Ai3Q9Ga81H4pqUkhHqzZFcGuR5D8ArsASnzVCEmK/5Iy8ZkgIEnZsPyZ8C/G1w72269FR2MBu69KJYp/UJwMGq4OBrtctzGcHcy8da0RK5+7w8emreVWTcmNSjVdZUlg2Wotf6diTeqCtSWNj4c3aRe5w2WojQObhCUwMVdErjZuZzBxStZ5X8VI8OblwbeUoZ3DSDY24XZaw9Wb31iTfQouPF7SF0KuYdVr9v9KyHvGOhmbgZudgRmPQyu/qpncuylqid1OzB9YDizVqbzeadHmZExHX7+C0xpfEXftqp9XUoTQghhlaZpDIsNwNFkwNul9XqztVXJUb51txFpQHXb4rIKfpz7Hm5aCfHj72qxc+0VpAoMlVeYOXq6iNJys10q2lZlNGjMHBHF9qNnWJWaZX0jS0paWmY+ANEdfMbT2cHI4Gh/lu3OqNUUHmDfyXwi/d3aRBXe1pQQ6gPA1iOn1aznkXWQs9/qtpvSjvKhx3s4LXtK/f79aYndgs6qgr1dCPSou79nS+ob5sPfJ/Rg2e4M3vktrUH7rErNJszXlVBfGxchPLuo1kaXPAszFsCfD8Hd62Hye9B3GpSXYFo/i6d4DzMacVc8br8fyM6MBo3rk8NYnZrN/K0NKMQUMRQufkqlzt7yEzy0A/1vGdwV8Am3aM9SOP5tlYbcfQL0uVb1Hm4nayVDfV25uHsn3tjuQPngByBlDuxb0tqnZTcd+91RCCEuII+N6caHN/VvU4Uj2orkSD90HTYcaHq67b9/3sPwgsUUuYfjHju0ZU4UiA/xpLjMTFpmwdmKtvYOPEG1Vunk6cS79XwQTs3Ip4uX87niLx3Y6LhADuUUkpZZUOux1Iw8YgObl2Z7Iegd6oWmwZbDpyF+qrpz+1e1tis8mcaTJx9kWMkKVfDlqk/A6cK9uDF9YDgT+wTxyi97WG3rYo9FeYWZtenZ1dNs62MwQEBXFWiNexluWwpPHKH4luXkXP8TnUPtH9Db081DIhgQ6csDczY3qffpgu2ZLDzswMVjJuPafxoMf1RVk530pqow247MGBJBTkEp33lcr1pvLXgQSvJb+7TsQgJPIYS4QHTydGZobCM+qHQgfcO8cTQa6m6rUjXdtoY16dn8snoNg4w7cRkwvUWvnsdXKTCUbpltjAqwf+DpZDJy69BIVqdmk3LktM3tUjPyO/z6zkqj4tQH2GW7q69FKy6r4FBOobxOqF6kMQHuKvD0DoOwQZDypSryUiltGQ4fjCZYy2THqFkw7OF2MyPVVJqm8cKUeKID3Lnvi80czy2yuW3K0VzySsoZEtPwYkRWmRxxDkukc7cBzTvOeeDqaOLjm/vTP8KXB+duaVTwWVhazgsLd9EzyJNr+rfNdOLGGBTlR7dOHny45hj65W9A7iFY/nxrn5ZdSOAphBDigufsYCQh1Ju16XWs87SRbptfUs4jX27lZvc16GjQ+9oWPddIf3dcHY1sP5rL/qwC3J1MLdab9boBYXg4m2zOeuq6Tlpmfodf31kp2NuFuM4eLKvazxNVAMqsQ2wneZ1ArfPccvi0SkmOn6qKwZzYpoLP1a/DZ1dy2ujHlLLniRp0RWuf7nnj5mTinRv6UVxWwd2zN1Fabra63WrL+s7B0R3rQqKro4mPbu7PgEgVfH67+UiD9nv31zSO5Rbz9MSe1qt0tzOapjFjSAQ7j59hvbmbWp+65h04sqG1T63ZJPAUQgjRISRH+bL92BnyS8ptb2Ql3fa5BTs5drqA651Wo0WNqLN/nD0YDRo9LQWG0rMKiApws2vLlqo8nB24cVA4i7afODu7WtXx3GIKSys6/PrOqkbHBbL+wKlq64XPVrSVVFsAEsK8ySko5VBOIfSYDAYTbPoEvr4VFj8J3S/nPreX8A6Nw9WxY6VwxwS68+LU3mw6dJoXFu2yus2q1Cx6Bnnia63v8AXO1dHERzMGkBzpx8PzttYbfB7OKeTdFelMSgiif4TveTrLlndFQjBeLg58/Pt+uOgp8AyC+fdCecMrI7dFEngKIYToEJIj/agw63Wv86yRbrts90nmrD/McwlncMo/Agk3nJdz7Rnkxc5jZ0jNyG+R9Z1VzRgciYPRwH9Xptd6LDVDBaMxMuN51ui4QCrMOiv3ZZ69LzUjH6NBI8K//VajtaeEUG/Ass7TzQ+iL4L1s2D7N3DRU+RP/IB1x0oZFNXMVNJ2akLvIG4eEsFHqw/wQ41iOoWl5Ww+dLpx6zsvMC6ORj6c0Z+BUX48NG8rX2+0HXw+/+MujJrGn8e27VYpjeXiaOTaAaH8vOMkR4sdYPx/IGMnrH6ttU+tWSTwFEII0SEkhntjMmh1r/O0pNvqe3/m1+0HePzrbcR19uAa0wpw8oS48eflXOODvSgqq+B4bjFR/i0b9AV4OHF1UghfbzxKxpniao+dDTxlxvOsvmE+eLs6VEu33Xcyn3A/V5xM579dR1vUrZMHLg5GNh86re4YeAf4RsG0r2DYQ2w4eIqKyv6dHdQTY7vTL9yHP3+dQqplxhxg/YFTlFaYO3TgCSrw+uCm/gyO9uORr7bylZXgc3VqFj/tOME9o2Po4uXSCmfZsqYPDEfXdT5bcxC6jYGeU2DFy5C5p7VPrckk8BRCCNEhuDqa6B3iVec6z9zCMn6sSEYrK2TO5x9h0OD1yTEYd8+HnpNVf8vzID7E6+z3kS1QWKim24dFU24288Hq6m0vUjPz8XJxwN+946X82WI0aIzsGsCvezKpMKuCOXsz8oiV4Pwsk9FAfIiXmvEEiB4N922G2IsBWJOeg4NRo1+4T+udZCtzNBl46/pEnB2M3PHZJgosSwBWp2bhaDTQP6LjvjaVKoPPIdH+PPrVVr7ccPjsY+UVZp75YQdhvq7cOjSyFc+y5YT4uHJpj858se4QxWUVMPZFcHCF+feB2fr64LZOAk8hhBAdRnKUHylHciksrb7Oc9fxMzzxTQrJLyzhvj9cOW3w5u+Ru1n1+Gi65SxT6z77np80W4DoAHdcHNTsWVQLp9oChPm5Mr53ELPXHKq2djEtI5/oFlxj2l6Nigskp6CUrUdOU1JewcHsQlnfWUPfUG92HjtDSXlFrcf+SM8mIdQbF8eOPUPc2cuZN67rS3pmPk98sw1d11m1L4vEcO8Ot/bVFmcHI7NuSmJojD+PfZ3CvPUq+PxszUH2nsznb+O74+xw4Y6jGUMiOF1Ypqr8ugfCmBdU9kB5cf07t0ESeAohhOgwkiN9KTfrbDp4mrIKMz+mHOfq9/5g7Osr+XbzUa5ICGb+fSPwTpxCcMYKHCqKYfNs8IuBkP7n7TyNBo0eQZ5Ay/TwtOaOEVHkl5Qze+3Bs/elZUorFWtGdA3AoMHy3RkcyCqkwqxLRdsaEkK9Ka0ws/PYmWr35xWXsf1obodOs61qSIw/D1/ajflbj/Hakn3sPH6GIR2smm19nB2M/PfGJIbFBvD4Nym8vyKN/yzey7BYfy7p0am1T69FJUf60r2LJx+tPqCqRCdcD5PfOW/ZN/Yml1OEEEJ0GEkRvhgNGq8u2cvRU0WcOFNMqK8LfxkXx9VJoXi7WlJKi6+ADR/Cuvfg0O+qwf15nvUbHhtAUWkFbk7n5091zyAvhncN4MNVB7hlSCTFZRVk5ZdK4GmFt6sjSeG+LN2VQbfOaqZTXqfqEsK8AVVgqG/YubRRWd9Z250jotl08BSvL90HwBDpx1yLs4OR96f3Y+anG/nnwt2YDBpPXd7jgs/G0DSNmwdH8NjXKazdn9Puf29kxlMIIUSH4e5kom+oNxsPnqJrZw8+uCmJXx8Zxe3Do88FnXCuuu2y50EztHjvTmvuuyiGH+8bel6f884R0WTll/D1piNSWKgeo+IC2Xn8DKv2ZaFpSK/TGrp4udDZ0/ncOk+LNWnZOBoNJIbJGsZKBoPGf65OINTXBQ9nE72DverfqQNydjDy3vR+TO0XwuNj4ojpIOntExOC8HF14OPVB1r7VJpNZjyFEEJ0KG/fkEhxqZkwvzpSlSzVbdnwoWoF4RV8/k7QojWu5A+M8qVPqDfvr0hn5vBoAGICOsaHu8YaHRfIiz/t5pvNRwnzdb2g15k1VUKo97nKthZrZH2nVV6uDnxx20Ay80owGWVeyBZnByP/vqpPa5/GeeXsYOS6AWG8+1saR04VEuLTPtNsoZkznpqmHdA0bZumaVs0Tdtgr5MSQgghWkqgh3PdQWel+KvU18TpLXtCbYimadw5IpqD2YX8d2U6jiYDwT4XXpsCe+jayZ1gbxdKy81S0daGhDBvDuUUkp1fAqj1nduO5jIwyreVz6xtCvFxrZaWLESlGwaGo2kan645WP/GbZg9LqmM0nU9Qdf1JDscSwghhGgbwgfD3euhxxWtfSbn1aU9OhEV4Mb+rAKi/N0wGi7sNVRNpWkao+MCATpMyl9jJYR6A7D1yGkA1h/IwazDwOj2vU5NiPMtyNuFMT07M2fdYYpKa1eKbi9kLl8IIYSwJaDreS8q1NoMBo07KtNsZSavTqO7q8Czq1S0tap3iBcGDbZY0m3XpOfI+k4hmmjGkAhyi8r4bsvR1j6VJmtu4KkDv2iatlHTtNutbaBp2u2apm3QNG1DZmZmM59OCCGEEC3tir7BJIR6M7JbYGufSps2IjaAV67qw7j4Lq19Km2Sq6OJbp092WwpMLQmPZuEMG9ZDytEEySF+9AzyJOPVu9XrVXaoeYWFxqq6/pRTdMCgcWapu3WdX1F1Q10XX8feB8gKSmpfb5KQgghRAfiaDLw3d1DWvs02jyDQePKfiGtfRptWkKoNwtSjpFbqPp33js6trVPSYh2SdM07hwZzbajuZSUm9vlBZxmzXjqun7U8jUD+BYYYI+TEkIIIYQQ7V/fUG/yisuZu+GQWt/ZzvsQCtGaJvQO4omx3dtl0AnNCDw1TXPTNM2j8nvgUmC7vU5MCCGEEEK0bwlh3gB8sGo/jiYDfS3/FkJ0PM1Jte0EfGvpM2YCPtd1/Se7nJUQQgghhGj3YgLc8XAycfJMCcmRvu12pkYI0XxNDjx1XU8HOlYHVyGEEEII0WAGg0bvUC9Wp2YzSNqoCNGhSTsVIYQQQgjRYir7ecr6TiE6tuZWtRVCCCGEEMKmqf1CyS0qk/6dQnRwEngKIYQQQogWE+nvxnNXxLf2aQghWpmk2gohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFGaruvn78k0LRM4eN6esGn8gazWPglxQZCxJC4UMpaFPcl4Em2djFFhLx11LIXruh5Q887zGni2B5qmbdB1Pam1z0O0fzKWxIVCxrKwJxlPoq2TMSrsRcZSdZJqK4QQQgghhBCiRUngKYQQQgghhBCiRUngWdv7rX0C4oIhY0lcKGQsC3uS8STaOhmjwl5kLFUhazyFEEIIIYQQQrQomfEUQgghhBBCCNGi2nTgqWlaqKZpyzVN26lp2g5N0+633O+radpiTdP2Wb76WO6fpmlaiqZp2zRN+13TtD5VjjVG07Q9mqalapr25zqe8ybLcfdpmnZTlfuvsxw3RdO0nzRN87exv9Xn0TTtHst9uq19Rctqp+PpQ03TMjRN217j/qc1TTuqadoWy21cc18f0X60sbF8jeXYOzRNe7GO/ftZnj9V07Q3NE3TLPdfZdnXrGmaVP5rBe10PD2vadphTdPya9w/Q9O0zCrvjX9qzmsjWl8rjc+fNE07rWnaghr3R2qattay/1xN0xxt7C/vd21UOx1PF877na7rbfYGdAESLd97AHuBHsBLwJ8t9/8ZeNHy/WDAx/L9WGCt5XsjkAZEAY7AVqCHlefzBdItX30s3/sAJiAD8Lds9xLwtJX9bT4P0BeIAA5UHkduMp7qGk+Wx4YDicD2Gvc/DTzS2q+p3Frn1obGsh9wCAiwbPcJcJGNc14HDAQ0YBEw1nJ/d6Ab8CuQ1NqvbUe8tdPxNNBy3vk17p8BvNnar6nc2u/4tGx7EXA5sKDG/fOAay3fvwvcaWN/eb9ro7d2Op4umPe7Nj3jqev6cV3XN1m+zwN2AcHAJNQfJCxfr7Bs87uu66cs968BQizfDwBSdV1P13W9FJhjOUZNlwGLdV3PsRxnMTAG9cahAW6Wq1aewDEr+9t8Hl3XN+u6fqBJL4Swi3Y4ntB1fQWQ0+QfWlyQ2tBYjgL26bqeadluCXBlzZ01TesCeOq6vkZXfy3/V+Xcdum6vqdJL4Swi/Y2niznsEbX9eNN/JFFO9IK4xNd15cCeVXvs/y9Hg18VfM5a2wn73dtWHsbT5b9L5j3uzYdeFalaVoEatZwLdCpyn/ACaCTlV1uRV1lAjWgDld57IjlvpqsbqfrehlwJ7ANFSD0AD5o6P42fyjRatrJeKrPPZb0jw8rU0JEx9OaYxlIBbppmhahaZoJ9Ucz1Mb+RxrwPKKVtZPxVJ8rLe+NX2ma1pT9RRt1nsanLX7AaV3Xy+vZX97v2ol2Mp7q067e79pF4KlpmjvwNfCArutnqj5muZqk19h+FGpwPG6n53dABQp9gSAgBXjCHscW598FMp7eAaKBBOA48Io9zk20L609li1Xge8E5gIrUUsJKuxxbHH+XSDj6QcgQtf13qiZ1E/q2V60E609PsWF5QIZT+3u/a7NB56WD+lfA7N1Xf/GcvdJSypDZUpDRpXtewOzgEm6rmdb7j5K9aumIcBRTdOSqyzInWhrO9SHe3RdT7MMxnnAYMsC5cr976hjf9FGtLPxZJOu6yd1Xa/Qdd0M/BeV8iE6kDYyltF1/Qdd15N1XR8E7AH2appmrLL/s5ZtQ6ztL9qGdjaebNJ1PVvX9RLLP2cB/Rr7Woi25zyPT1uyAW/LbHzV/eX9rp1pZ+PJpnb5fqe3gYWmtm6odXD/A16rcf/LVF8A/JLl+zBUqs7gGtubUMULIjm3ALinlefzBfajihz4WL73Rc1KHedcwYN/AK9Y2b/e50GKC8l4auB4qnKcCGoXF+pS5fsHgTmt/frK7fzd2spYtjwWaPnqA2wButo455rFNsbVePxXpNiGjKcGjqcqx6pZbKPqe+NkYE1rv75ya1/js8r2I6ldDOZLqheDucvGvvJ+10Zv7XE8Vdm+3b/ftfoJ1PMCD0VNdadY/gBtAcah8qKXAvtQxQcq/2DNAk5V2XZDlWONQ1WuSgP+Wsdz3mIZYKnAzVXuvwO1ADkFNbXtZ2N/q88D3IfK3y5Hreub1dqvb0e7tdPx9AUqSC2zjJ9bLfd/ilojmgLMr/rmI7cL/9bGxvIXwE7L7do69k8Ctlue501As9w/2TK2S4CTwM+t/fp2tFs7HU8vWcaN2fL1acv9LwA7UB8ClwNxrf36yq1djs+VQCZQZBlfl1nuj0IFlamooMHJxv7yftdGb+10PF0w73eVvwhCCCGEEEIIIUSLaPNrPIUQQgghhBBCtG8SeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFESeAohhBBCCCGEaFH/DwkvVA7htjoPAAAAAElFTkSuQmCC", - "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-10-18T15:40:09.231808\n image/svg+xml\n \n \n Matplotlib v3.3.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "geo_code = \"ca\"\n", - "rd = remote_data.loc[geo_code, :][\"value\"]\n", - "ld = local_data.loc[geo_code, :][\"val\"]\n", - "plt.figure(figsize=(16, 6))\n", - "plt.plot(rd, label=\"remote\")\n", - "plt.plot(ld, label=\"local\")\n", - "plt.title(geo_code)\n", - "plt.legend()\n", - "print(\"Total difference: \", rd.sub(ld).sum())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Automatically Detecting Outliers\n", - "Defining your own comparison statistics, we can automatically plot outlier signals." - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAF1CAYAAAAQgExAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACuO0lEQVR4nOydd5xb5Zn9z6tepo8r2JhmmrExxNiUkEaALCG9EZKQXjbZ1CUb8kt2k2yy7Kb3XkkjpIdUCC2hgw0GbAzYuIDr2CNNUy/398ejV9LMqNw2npF0vp8PH3k0knx9ubr3nvc5z3mUYRgghBBCCCGEEEJmA89sbwAhhBBCCCGEkM6FopQQQgghhBBCyKxBUUoIIYQQQgghZNagKCWEEEIIIYQQMmtQlBJCCCGEEEIImTUoSgkhhBBCCCGEzBoUpYQQQsgsoZTarJR61mxvByGEEDKbKM4pJYQQQgghhBAyW7BSSgghhMwCSinfbG8DIYQQMhegKCWEEEIOE0qpnUqpDymlHgKQUErtVko9d7a3ixBCCJlNKEoJIYSQw8urATwfQB+A/OxuCiGEEDL70DpECCGEHF6+YhjGUwCglJrtbSGEEEJmHVZKCSGEkMPLU7O9AYQQQshcgqKUEEIIObww9p4QQgipgqKUEEIIIYQQQsisQVFKCCGEEEIIIWTWUIZBFxEhhBBCCCGEkNmBlVJCCCGEEEIIIbMGRSkhhBBCCCGEkFmDopQQQgghhBBCyKxBUUoIIYQQQgghZNZoKkqVUj9QSg0ppTZVPfdZpdSjSqmHlFK/U0r1Vf3uw0qpbUqpx5RSF83QdhNCCCGEEEIIaQOapu8qpZ4BYALAjw3DOLX03IUAbjYMI6+U+jQAGIbxIaXUKQCuAbAWwBEAbgRwgmEYhUZ/x7x584yjjz7a6b+FEEIIIYQQQsgcZMOGDYcMw5hf63e+Zm82DOOfSqmjpzx3Q9WPdwN4eenPLwLwC8MwMgB2KKW2QQTqXY3+jqOPPhrr169vtimEEEIIIYQQQloQpdSuer9zo6f0TQD+WvrzkQCeqvrd7tJztTbqbUqp9Uqp9QcPHnRhMwghhBBCCCGEtBqORKlS6iMA8gB+ZvW9hmF8xzCMNYZhrJk/v2YVlxBCCCGEEEJIm9PUvlsPpdQbAFwC4Hyj0pi6B8DSqpctKT1HCCGEEEIIIYRMw5YoVUo9D8B/AHimYRjJql9dB+DnSqkvQIKOlgO4187fkcvlsHv3bqTTaTtvb2tCoRCWLFkCv98/25tCCCGEEEIIIY5oKkqVUtcAeBaAeUqp3QA+BuDDAIIA/q6UAoC7DcN4h2EYm5VSvwTwCMTW+65mybv12L17N7q7u3H00Uej9HcQAIZhYHh4GLt378Yxxxwz25tDCCGEEEIIIY4wk7776hpPf7/B6/8HwP842SgASKfTFKQ1UEphcHAQDIcihBBCCCGEtANupO/OGBSkteF+IYQQQgghhLQLc1qUdgK33nor7rzzztneDEIIIYQQQgiZFShKTWIYBorFouufS1FKCCGEEEII6WQoShuwc+dOnHjiibj88stx6qmn4pOf/CTOPPNMrFq1Ch/72MfKrznppJPwhje8ASeccAJe85rX4MYbb8S5556L5cuX4957JXw4FovhxS9+MVatWoWzzjoLDz30EHbu3Ilvfetb+OIXv4jVq1fjtttuw8GDB/Gyl70MZ555Js4880zccccds7kLCCGEEEIIIWRGsT2n9HDyiT9uxiN7x1z9zFOO6MHHXrCi6eu2bt2Kq6++GmNjY/j1r3+Ne++9F4Zh4IUvfCH++c9/4qijjsK2bdvwq1/9Cj/4wQ9w5pln4uc//zluv/12XHfddbjqqqvw+9//Hh/72Mdw+umn4/e//z1uvvlmXH755di4cSPe8Y53oKurC1dccQUA4LLLLsP73/9+PP3pT8eTTz6Jiy66CFu2bHH1304IIYQQQgghc4WWEKWzybJly3DWWWfhiiuuwA033IDTTz8dADAxMYGtW7fiqKOOwjHHHIOVK1cCAFasWIHzzz8fSimsXLkSO3fuBADcfvvt+M1vfgMAeM5znoPh4WGMjU0X2jfeeCMeeeSR8s9jY2OYmJhAV1fXDP9LCSGEEEIIIXbYHU9iIBpAJEB5ZYeW2GtmKpozRTQaBSA9pR/+8Ifx9re/fdLvd+7ciWAwWP7Z4/GUf/Z4PMjn85b+vmKxiLvvvhuhUMjhlhNCCCGEEEIOBy/5xp14zbqj8L7nnjDbm9KSsKfUJBdddBF+8IMfYGJiAgCwZ88eDA0NmX7/eeedh5/97GcAJNxo3rx56OnpQXd3N8bHx8uvu/DCC/HVr361/PPGjRvd+QcQQgghhBBCXMcwDBwcz+DQRGa2N6VloSg1yYUXXojLLrsMZ599NlauXImXv/zlk8RkMz7+8Y9jw4YNWLVqFa688kpcffXVAIAXvOAF+N3vflcOOvrKV76C9evXY9WqVTjllFPwrW99a6b+SYQQQgghhBCHZPIyoSOVdX9SR6egDMOY7W3AmjVrjPXr1096bsuWLTj55JNnaYvmPtw/hBBCCCGEzD7xRBanf/LveP7Kxfj6a86Y7c2ZsyilNhiGsabW71gpJYQQQgghhBCbpHKFSY/EOhSlhBBCCCGEEGKTZLZQerQWcEoqUJQSQgghhBBCiE3S5Uope0rtQlFKCCGEEEIIITbRtt10lvZdu1CUEkIIIYQQQohNUln2lDqFopQQQgghhBBCbMKgI+dQlDagq6vL1c/7+Mc/js997nOufiYhhBBCCCFk9kjTvusYilJCCCGEEEIIsQntu86hKDWBYRj44Ac/iFNPPRUrV67EtddeW/7dpz/9aaxcuRKnnXYarrzySgDAd7/7XZx55pk47bTT8LKXvQzJZHK2Np0QQgghhBAyg2gxmi8ayBWYwGsH32xvgCn+eiWw/2F3P3PRSuBf/s/US3/7299i48aNePDBB3Ho0CGceeaZeMYznoGNGzfiD3/4A+655x5EIhHEYjEAwEtf+lK89a1vBQB89KMfxfe//328+93vdnf7CSGEEEIIIbNOdYU0lSvA72XdzyqtIUpnmdtvvx2vfvWr4fV6sXDhQjzzmc/Efffdh3/84x944xvfiEgkAgAYGBgAAGzatAkf/ehHMTIygomJCVx00UWzufmEEEIIIYSQGaK6lzSdLaAn5J/FrWlNWkOUmqxozhXe8IY34Pe//z1OO+00/OhHP8Ktt94625tECCGEEEIImQGmVkqJdVhbNsF5552Ha6+9FoVCAQcPHsQ///lPrF27FhdccAF++MMflntGtX13fHwcixcvRi6Xw89+9rPZ3HRCCCGEEELIDEJR6pzWqJTOMi95yUtw11134bTTToNSCp/5zGewaNEiPO95z8PGjRuxZs0aBAIBXHzxxbjqqqvwyU9+EuvWrcP8+fOxbt06jI+Pz/Y/gRBCCCGEEDIDpLLFqj9TlNpBGYYx29uANWvWGOvXr5/03JYtW3DyySfP0hbNfbh/CCGEEEIImX3e9bP78eeH9wEAfv7WdTjnuHmzvEVzE6XUBsMw1tT6He27hBBCCCGEEGKTZDYPpeTPrJTag6KUEEIIIYQQQmySyhXQG/aX/0ysQ1FKCCGEEEIIITZJ5YoYiATkz6yU2mJOi9K50O86F+F+IYQQQgghZG6QzhbQHxVRmmal1BZzVpSGQiEMDw9TgE3BMAwMDw8jFArN9qYQQgghhBDS8aRyBfTrSilFqS3m7EiYJUuWYPfu3Th48OBsb8qcIxQKYcmSJbO9GYQQQgghhHQ8qVwBA9FST2nVeBhinjkrSv1+P4455pjZ3gxCCCGEEEIIqUs6W0BX0I+A18NKqU3mrH2XEEIIIYQQQuY6qVwB4YAH4YCXPaU2oSglhBBCCCGEEBvkCkXkiwbCfi/Cfi/Td21CUUoIIYQQQgghNtB23ZDfi3DAS/uuTShKCSGEEEIIIcQG6VJlNBzwIuSnKLULRSkhhBBCCCGE2ECLULHvethTahOKUkIIIYQQQgixwSRRGmBPqV2ailKl1A+UUkNKqU1Vzw0opf6ulNpaeuwvPa+UUl9RSm1TSj2klDpjJjeeEEIIIYQQQmaLZEmEhgISdJSkKLWFmUrpjwA8b8pzVwK4yTCM5QBuKv0MAP8CYHnpv7cB+KY7m0kIIYQQQgghc4tyT6lfekpp37VHU1FqGMY/AcSmPP0iAFeX/nw1gBdXPf9jQ7gbQJ9SarFL20oIIYQQQgghc4bJPaUMOrKL3Z7ShYZh7Cv9eT+AhaU/HwngqarX7S49Nw2l1NuUUuuVUusPHjxoczMIIYQQQgghZHYoi9IAR8I4wXHQkWEYBgDDxvu+YxjGGsMw1syfP9/pZhBCCCGEEELIYSWVnVIpZU+pLeyK0gPallt6HCo9vwfA0qrXLSk9RwghhBBCCCFthe4hDZV6SjP5IopFy/W6jseuKL0OwOtLf349gD9UPX95KYX3LACjVTZfQgghhBBCCGkbptp3ASCdZ7XUKr5mL1BKXQPgWQDmKaV2A/gYgP8D8Eul1JsB7ALwytLL/wLgYgDbACQBvHEGtpkQQgghhBBCZp1UtgigYt+V5wqIBJrKLFJF071lGMar6/zq/BqvNQC8y+lGEUIIIYQQQshcJ5UrIODzwOtR5Uopw46s4zjoiBBCCCGEEEI6kXSuUK6Q6kfOKrUORSkhhBBCCCGE2CCVnS5KtaWXmIeilBBCCCGEEEJskMoVyrZd2nftQ1FKCCGEEEIIITZI5QoIlSqk+pGi1DoUpYQQQgghhBBiA+kpFUlVnb5LrEFRSgghhBBCCCE2SGZr2Xfzs7lJLQlFKSGEEEIIIYTYgEFH7kBRSgghhBBCCCE2SFf1lIbZU2obilJCCCGEEEIIsUGqak5pKCDSinNKrUNRSgghhBBCCCE2qB4JE/B64FEMOrIDRSkhhBBCCCGE2KC6p1QphbDfS/uuDShKCSGEEEIIIcQixaKBTL5YrpQCksBLUWodilJCCCGEEEIIsUg6L+JTV0oBIOT3Ik37rmUoSgkhhBBCCCHEIrp3tLpSGmGl1BYUpYQQQgghhBBiES0+Q1WVUvaU2oOilBBCCCGEEEIsoke/TLXvMn3XOhSlhBBCCCGEEGKRVLYIYLIoDQe8nFNqA4pSQgghhBBCCLGItulOSt+lfdcWFKWEEEIIIYQQYhH2lLoHRSkhhBBCCCGEWCSVzQOY0lMaYE+pHShKCSGEEEIIITXJ5AvskaxDXfsuRallKEoJIYQQQgghNbniVw/hfb/YONubMSepGXRUsu8ahjFbm9WS+GZ7AwghhBBCCCFzkyeHE8gVKLBqkaoxEiYc8KJoANlCEUGft95byRQoSgkhhBBCCCE1Gc/kkacorYm2NYcCFfOpDj1KZylKrUD7LiGEEEIIIaQmiUweiUx+tjdjTpLKFuD1KAS8FUmlq6ZM4LUGK6WEEEIIIYSQmiQyBeQKxdnejDlJKldA2O+FUqr8XLhUNaUotQZFKSGEEEIIIWQahmEgkc3DMIB8oQiflybLalK5wqQZpUBVpZQJvJbgkUUIIYQQQgiZRjJbgA6RTWQosqaSzhbKlVFNOCA1P1ZKrUFRSgghhBBCCJlGdS/pRJZ9pVPR9t1q9M+c7WoNilJCCCGEEELINCaqRCnDjqbTSJTSvmsNilJCCCGEEELINKotuxMUpdNIZWv0lDLoyBYUpYQQQgghhJBpsFLamHSugHBgsigNcSSMLShKCSGEEEIIIdOoFqUTaYrSqbCn1D0oSgkhhBBCCCHTmBR0xErpNJLZGqK0VDlNsqfUEhSlhBBCCCGEkGnQvtuYdK6A0FT7ro9BR3agKCWEEEIIIYRMo1qIJiiyppGqUSn1eBSCPg/tuxahKCWEEEIIIYRMQ4tSn0fRvjsFwzBq9pQCYuFl0JE1HIlSpdT7lVKblVKblFLXKKVCSqljlFL3KKW2KaWuVUoF3NpYQgghhBBCyOFhIlNAV9CHaNBH++4UsoUiigampe8CEnZE+641bItSpdSRAN4DYI1hGKcC8AK4FMCnAXzRMIzjAcQBvNmNDSWEEEIIIYQcPhKZPKJBL7qCPlZKp5DOFgGgdqXUz0qpVZzad30AwkopH4AIgH0AngPg16XfXw3gxQ7/DkIIIYQQQshhZiKbRzToQxcrpdPQorNWpTTk97Kn1CK2RalhGHsAfA7AkxAxOgpgA4ARwzD0UbsbwJFON5IQQgghhBByeJlI50v2XS8rpVMoi1L2lLqCE/tuP4AXATgGwBEAogCeZ+H9b1NKrVdKrT948KDdzSCEEEIIIYTMAIlMHtGA9JROZCiyqtE9o6EaojQSYE+pVZzYd58LYIdhGAcNw8gB+C2AcwH0ley8ALAEwJ5abzYM4zuGYawxDGPN/PnzHWwGIYQQQgghxG0mMrTv1qOZfTeVKx7uTWppnIjSJwGcpZSKKKUUgPMBPALgFgAvL73m9QD+4GwTCSGEEEIIIYebRDaPrqCX6bs1SDey77Kn1DJOekrvgQQa3Q/g4dJnfQfAhwB8QCm1DcAggO+7sJ2EEEIIIYSQw0giUyhXStlTOhltz62bvkv7riV8zV9SH8MwPgbgY1Oe3g5grZPPJYQQQgghhMwuExkJOvJ5FRKZPAzDgBgkScW+O73Gx6Aj6zgdCUMIIYQQQghpM3KFIrL5IrqCPnQF/SgaQJp9kmUaBR2FWCm1DEUpIYQQQgghZBK6h1TsuyK8aOGt0HAkjN+LbKGIfIEi3iwUpYQQQgghhJBJaAEqc0ql449hRxUape9qS286T1FqFopSQgghhBBCyCQmqiqlWpSyUlqhbN/11a6UVr+GNMdR0BEhhBBCCCGk/ajYd73we6WORVFaIZ0rIOjzwOOZHvyk+0w5FsY8FKWEEEIIIYSQSUxkRFBJ+q6IUtp3K6RyBURqWHeBiqWXCbzmoSglhBBCCCGETKI66MjvlWogK6UVUtlCzZAjgPZdO1CUEkIIIYQQQiZRHXTkK4nSRIYiS5PKFRCqVyn1s1JqFYpSQgghhBBCyCSqK6UVUcpKqSadq18pDdG+axmKUkIIIYQQQsgkqoOOfB4GHU0l1UCU6l7TNO27pqEoJYQQQgghhExiIlNAwOtBsDTyJBLwslJaRSpbKI/KmQrtu9bhnFJCCCGEEELIJBKZPKLBSiUwGvQhkaUo1aRyxfLol6lQlFqHopQQQgghhBAyiYlMflIlsCvow3iaolRjqqeU9l3TUJQSQgghhBBCJjGRyaOrSpRGg7TvVmNmJEyalVLTUJQSQgghhBBCJpGYUimNBnwcCVNFMptHuM5IGL/XA59HIclKqWkoSgkhhBBCCCGTmCpKu4I+pu9WkW7QUwpItZQ9peahKCWEEEIIIYRMQuy7DDqqRb5QRLZQrGvfBaSvlPZd81CUEkIIIYQQQiaRyBSm9JT62FNaIp0vAgDCgfpSKuz3MujIAhSlhBBCCCGEkElMte92h2jf1WixGQ7UnlMK0L5rFYpSQgghhBBCSBnDMJDITknfDfiQzhWRLxRnccvmBtqW28y+m8pxX5mFopQQQgghhBBSJpUroGhgcvpuqb80QUtquQLaSJSG/R6kua9MQ1FKCCGEEEIIKTORFpvu1PRdALTwotq+26SnlPZd01CUEkIIIYQQQspo4Tk1fRcAw45QqZQ2HAkToCi1AkUpIYQQQgghpEwiI2IqGmCltBbm7Ls+pu9agKKUEEIIIYQQUqZSKZ08EgZgpRRAuVc0HGhUKfVwTqkFKEoJIYQQQgghZbTwrBl0RFFqslJK+64VKEoJIcQmu+NJ/OD2HbO9GYQQQoirJLKlSmmoln2XQsuKKDUM43BtVktDUUoIITb5/QN78N9/egTxRHa2N4UQQghxjVr23S7ad8voXtFQA/tuKOCFYQCZPGeVmoGilBBCbDKSzMljKjfLW0IIIYS4R237LoOONOWRME0qpdWvJY2hKCUdhWEY+OSfHsHDu0dne1NIGzBaEqOjFKWEEELaCD2nNFIluoI+D3weRVEKse/6PAp+b+M5pfq1pDkUpaSjGM/k8f3bd+CGR/bP9qaQNkBXSEeStO8SQuYOT8WSePV37uaCGbHNRKaAaMALj0eVn1NKIRr00b4LEZqNqqRAJZmXotQcFKWkoxjVdsskL9TEOayUEkLmIut3xXDX9mE8fmB8tjeFtCiJTH6SdVfTFfSxUgognSs0HAcDACHady1BUUo6CvYAEjfRixwUpYSQucQIF2CJQyay+UkhR5po0MtKKURoNhOlupLKWaXmoCglHcVISmyWtFsSNyhXSnnjRwiZQ9DFQZxSr1Iq9t0OElnFIpDPTHua9l33oSglHcUIK1vERcqLHDyeCCFziEqllAuwxB6JTO1KacfZd++/GvjSSqA4WVimcsWyPbceTN+1BkUp6SgqwTQUEcQZ6VwB6ZzMHuMiByFkLsFKKXHKRKZQu1Ia6LCgo4OPARMHgMTBSU+ns80rpSGm71qCopR0FGO8UBOXGKs6hrjIQQiZS+gKKc9NxC5SKZ0uurpCHSZKU3F5HNs7+WkTQUf69+wpNQdFKeko9IV6LJ1DoWjM8taQVqZ6YWOMixyEkDlE2RXEcxOxCdN3S6Ri8jg+eZSgmZ7SCO27lnAkSpVSfUqpXyulHlVKbVFKna2UGlBK/V0ptbX02O/WxhLiFL1qbBjAeJoXa2IffbMXDXjLvaWEEDIXGGVPKXHIeJ2e0mjQi4lMHobRIQv7ulI6PqVSmi007yktBx0VZ2TT2g2nldIvA/ibYRgnATgNwBYAVwK4yTCM5QBuKv1MyJxghJZL4hL6pu+owSjt4ISQOcUIW1WIA3KFIrL5Yt303aKBcqZC21MWpZMrpTKntLGMCvrk9+wpNYdtUaqU6gXwDADfBwDDMLKGYYwAeBGAq0svuxrAi51tIiHuUT26g7Ym4gR9/CwbiHCBgxAyZygWDfaUEkfontF69l0AnWPhTZbsu2P7Jj1txr6rlELY72VPqUmcVEqPAXAQwA+VUg8opb6nlIoCWGgYhv4/tx/AwlpvVkq9TSm1Xim1/uDBg7VeQojrjKSymN8dlD/T1kQcoCsQywYjyOSLvOgQQuYEE9k8igagFK9zxB5acNYKOooGRJR2RNhRsQikR+TP4xVRahiGKVEKiIU3me2AfeUCTkSpD8AZAL5pGMbpABKYYtU1xHBe03RuGMZ3DMNYYxjGmvnz5zvYDKL58V07cd2De5u/sIMZTeVw9GCk/GdC7DKazEIpYEl/WH7m8UQImQNoR9ARvWGMpfMM9SOWSWRkkbWefRfokEppZhQwSjblKlGayRdhGECoSfouILNKU9kOsTo7xIko3Q1gt2EY95R+/jVEpB5QSi0GgNLjkLNNJGb54R07ce19T872ZsxpRpI5LBuMAqCIIM4YTeXQHfShPxoo/0wIIbONtuwuKy3AMh2cWKVSKa1v3+2ISqnuJw10TRKlOk3XTKU05PfQSWUS26LUMIz9AJ5SSp1Yeup8AI8AuA7A60vPvR7AHxxtITFNPJlFPMGLTz3SuQIy+SKWDciFmr02jckXuLLXiJFUDn2RAPrCIkp5PNXn0EQGT8WSs70ZhHQEOg1cL8AyP4FYJdFAlEZLlt5EJ1hStShdcLL8OZeSp3PmRWk44GXQkUmcpu++G8DPlFIPAVgN4CoA/wfgAqXUVgDPLf1MZphC0cBoKoc4+0fqokXDQFcAXUEfRUQDth+cwMn/9Tc8tn98tjdlzjKayqE37Edv2F/+mdTmU396BG//yYbZ3gxCOgJ9bdOtKuwrJVZpFHTUHdL23Q4QWkktSk+Rx1ICb1mUmrbvdsC+coHpR5sFDMPYCGBNjV+d7+RziXVGUzkYBihKG6BXj/vCAfSG/Zwt2YBtQxPIFQxsG5rAiYu6Z3tz5iQjyRz6In70Rfyln3k81WPvaBr7x9KzvRmEdATlZHBWSolNGtl3o51o3124Qh7H9wEDx1i073oxnu6AfeUCTiulZI4QS8gNcTpX5IpMHfTqsRYSo6yU1kUvbsQotOoylsqhJ+xHDyulTYknshhJZhm40oSf3L0Ldz5xaLY3g7Q4o0lt3y2F+vFaRywy0aBSWg466gShlSqNgylXSqWvNG2xUsqeUnNQlLYJ1VUaVktro0VDb7gkSiki6hIr9SbHEzyW6jGSyqEv7Ed30AePoihtRDyZRdFg4EozvnDDY/j5PQyrI84YTeUQ9nuxsCdU/pkQK1Tsu/VHwnRE+m5qin23NKuUPaUzA0VpmxCrEg8xComajFZXSsMBWpoaoBc5uMBRG8Mwyj2lHo9CT5iLHPUoFg3ES989Vt7rUygaGGEuAHEB3VrQU+r9Y34CscpEpgC/VyHomy66vB6FsN/bOfbdYC8QGQB84XKlVDsSQ2ZEKXtKTUNR2iZUX3R4AapNuac0EkBvxM/91AC9sMFKaW0mMjL7T/eT9oV5PNVjvGpOIo+n+uhcgBgT1IlDRkoLZj6vB90hH/MTiGUSmXxN664mGvR1RvpuMgaE+wClgJ7FFVFqwb4b8rNSahaK0jahugLBakRtRpI5eD0K0YAXvWE/RlNZGAZ73GpR6SnlDXItqq3g+pGV0trEJ7UWcB/VgwtBxC1GS5VSAMxPILZIZPI1Q440XUFvZ6TvpuJSJQWA7sXl9N20BftuJMCeUrNQlLYJ1Td+TAGtje4BVEqhL+xHrmAgSUtFTXiD3BhdFe0tzSjtjdAOXo/qRTIeT/XR37lYgotlxBkjqWx5fjJbVYgdJpqI0mjQ1yH23RgQ7pc/dy8GxvbK0xbSd8N+L3IFAznOfm8KRWmbEE9kMa9LLkLsKa3NaDKH3qrVY4BR+fUo9wDyWKrJWI1KKUN8alMtROniqI/+rmULRSS4WEYcMDKlUsqFamKVRLa5fbdjgo7CulK6SCqlhoFUTgSmqfTd0mtYLW0ORWmbEE/mMK8riJ6Qj71tdRgtVUqBSoWLtqbalCulvJmpiV7MmNxTyn1Vi+qFDVZK6xNnRdkUmXwBb/rRfdi0Z3S2N2VOYhgSmKUXYGUmN69zxBoTmUJDUdrdMZXSeKVS2nMEkE8B6ZFyj2jQ11xG6TAk9pU2h6K0TYgnsuiPBDAQDbC6VYeRVBZ9kZKlqVwp5b6aSr5QxGgqh6DPg2S2wNW9GtTrKS1yDuc0tNjqDvp4bmoAE9TNsTuews2PDuGObZznWot0rohsvlix77KnlNhAekrrVwE7wr5bLACpkSr77iJ5HN+PVDaPsN8LpVTTj9EWXybwNoeitE2IJ7Poj/rRFwmwulWHkWRukogAWCmthV5VP2ZeFACrpbUYSU6plEb8KBrARCekEVoklsjB71VYMhDhsdQAilJzDE/IvhnmPqpJJWVeuzikp5R9ysQKE+l8eR5pLTrCvpseBWBUBR0dIY9je5HKFUxZd4GKfZeV0uZQlLYJ8WSuXCnljV9tRqtEKXtK66NtqMct6ALAG+RajKZEaOkV0B4uctRFuzgG6eJoSDyRhae06M79VJ9YIgOgIk7JZCohbJUF2ELRaH8BQVyl2UgYSd9t82MqFZfHmpXSoqmQI4CVUitQlLYBxaKBkaTc+PVF/Ihzzt00coUixjP5SavHAGe61kLPSTxuvohS7qPpjKay6A0HytYd3avMsTDTiSezGIgG0B8N8FhqQCyZxVEDEQB0JzRiuJxSnJnlLZmblF0cWpTqBVh+94hJDMNAIts8fTedKyLfzomyZVFaNRIGAMb3Im2hUsqeUvNQlLYBY+kcigbQHw1ggPbdmuhkVH2hDvk9CPg87Cmtga7SHDc/OulnUmE0lUNvuHLB7qUorUs8mUVfxI/+iJ/puw2IJ7JYOhCB36v4nWsA7buNGS1d03qrQtjkeZ6biDlSuQKKBppUSuV3bZ0UPrVS6g/Jn8f2iX3XbKWU6bumoShtA/T4jv6IH/3RAMNpajBaTkuVCqmeVcoxHtPRixrHzuua9DOpMJrKlY8loHJcsRoxnViiVCmNBDCayrX3yroDhhNZzOsKoj9Cm3Mj9L6hfbc2lX73wKRHnpuIWbQttyvUuFIKoL3DjpIxedSiFJC+0vH9SGUtiNKyfZfXvmZQlLYB+iLdX7rxA3gBmoruHdWrx4Ce38b9NBV9PB3DSmldqkOzAFZKG1Hd724Y3Ef1YIK6OSr2Xe6jWoxMcQUxaZ5YJZGRokaz9F15bRuLUl0p1UFHQGlWqQQdhcwGHdG+axqK0jZAB9P0RwLoL12AWN2azOiU8Af9Z4rS6cQTWYT9XnQFfegN+zkzsQbVM28B3vjVo1Dqd9c9pQDPTbVI5wpIZAsYiPrRzxaMhgxPSC9pKldAkmnX0xhJSghbpHTDrM9TvNYRs2ih2Sh9VwvWtg47SsUBKCDUW3muZzEwvl96Sv3mJFQoIK+jKG0ORWkboFeMByJVN34UEpMox+RPEqUBpu/WIFYSEQCkasObmWmMJnPlxF1AggwCPg+rgFMYS5X63SPS7w5UgrRIBS0Y+qOslDajet/QwjudqSFsPXRxEIuU7bsNe0rluNJV1bYkFRNB6qmqiHYvBiYOIJvNWrbvptu5/9YlKErbgHIPSWmVHaj0mRJhap+N/NmPUVYkphFPyMxbQPqUucAxmfyUJGdNX5hD6qeiK35SKZX9RcE1neFSkuwgRWlThhNZzO8OAuCxVAvpd5+8YBb2eylKiWkm0qVKacP0XV0pbePjKhWf3E8KiCg1ighlY+bnlNK+axqK0jYglszC51HoDvoqN34UW5PQorSnqnG/L+xnpbQGsVIPIADeINdgrHTBrraC65954zcZLUp1BRCotBuQCnqMV3/J7TKSyqFQNGZ5q+YexaKBWCKLExZKCNswx8JMYyQ5ubUA0PkJ/N4RcySyzUWprqJOtHOlNBmrLUoB9OQPlke9NMPn9SDg9VCUmoCitA0YSWbRFwmUEmVLN34UEpMYTeXQHfLB560c8n0RP5LZArJ5JqJVM1Jl32V/23QqSc61bvwoSquJlcVWxcXBBbPpxKoqygMRPwOh6jCWFrG+fEE3ANp3azGSzE07NzE/gVjBjH23Y4KOqkOOAOkpBdCXHzZt3wVkDGGK9t2mUJS2ATJyQS5CAZ8H3UEfb/ymMNXSBAC9pZtk3vxNJlZKAQXkJpmidDK64sBKaXO09bs/EijbCGkHn068OkE9qntvuZ+mopN3l5cqpdxH05EZyoFJz/VF6Aoi5ikHHTVI361USttclNaplM4zYpZEaTjg5ahGE1CUtgHx5JSZiVGuik5lJJmtKSKAyrBxAuQKRYyn82VR2hcJIJ0rcoWvCi08p9749YYDFKVTqK4A6kcGHU1nOJGFUtJSMBhlv2Q9dGV0aX8EQZ+nLFJJBXFOTe13D7DfnZhGW3Ibpe8GfR54ParNK6UxIDylUhqdD0N5sVDFTfeUAtJXSvtucyhK24B4IltOtgQkhZc3NJMZSeXK1mYNo/KnUwmm8U96ZOW9QkWUslLajHgii4DPUx5P0R/1s/Jeg3hCFs18Xg8DoRoQK/WQDkQDGIwGaN+dQjZfRCJbqN1TysVXYpJEJo9owAuPR9V9jVIK0YC3fUVpsQCkR6dXSj1eFKMLsAgx0z2lgASOJbm43xSK0jYgnsyVb2QAqW4x1GAyo8kcemv0AAIUpdWUA1eqekrleR5PmkY9pROZPHIF9ihrYqUFMz2eop8LZjWJJSsLiwOc51oXXRmd1xXEYFewLFKJUO/c1Mt+d2KBRCbfMORI0xX0tW/QUWpEHqeKUgD56CKplNK+6zoUpS2OYchw+v7qSmk0wMrWFKRSOt3SpH9HhOqZt0DlBplCooK+uatnBx/j8VRGFswmn5sotqYjY5gmLwTxOzcdXRntj/oxEA3QvjsF3YrSG5nqCgogky/yppiYYiKTbxhypIkGfe1bKU3F5XFq0BGAbHgBFqp42QFkhrDfyzYoE1CUtjjjmTzyRWOSKO2L+DHCvq0yhmHUCTriUPGpVI/wqH6kkKgwmsohGvDC7518+ixX3nk8lYknKyFsQCnNmUJiGhJWJ9+1kN+LaMBLUVqDWCKL7qAPQZ+X9t0aNFswY7V0OsWiQbE+BdOV0pCvPD6m7dCitEalNB1eiIUqjhB7Sl2HorTFqU5t1AxEAhjP5DnqpMREJo9C0ZjWU9od9MGjgFEKrjLlSqkOpmHVZhojydy0mz4A6AlzkWMq8UR2UghbfySAsTQtzlOJTckF6I9SvNdiOJHFYJfsp8EuWsGnokVnrZ5SAOwrrcGP7tyJ53zuVhgG5wJrJjL5hsm7mq6gD+PpdhWlMXmcGnQEIBmcjz6VQESZv9aHAhSlZqAobXHiycocQE2fHlLPCxCA+qvHHo9CT5hR+dXoXmR9E9MT9sOj2FNazWgqN80eB1RuBJlyWaG6VxKoBGexYlPBMAzEk9lpNme2YExneCJTleQcRCpXQLJdKzU2GKnX785KaV227BvD3tE0xlI8jjQTmYI5+26gA+y74b5pv0oE5wMAenKHTH9c2O9FmvbdplCUtjj1KqXyO16AgKq01Mj06lYfh4pPIpbIoatkjwMAr0ehL8Ib5GpGU1n0hqdfsHtZKZ1EvlDEaGpyTynt4NORcCyDNmcTiM1ZRuYMlo4lWngrlBcVp46rYqhfXYbGM6XH9CxvydzBrH23rXtKk7pSOt2+O+4TUdqVHTL9cbTvmoOitMUp9wBOssj5J/2u06lnaQIkEIKV0gpSsZm8n/oj/nJFnojonHrTB6BsU2XytTCaysEwgIGqxSDawaejFw+12AJEcDHEZzrDiSzmVdl3AR5L1YymclAK6A5NFhT63MSZ3NOpiFImOWvMp+96MdGuojQVB6CAUN+0X4345wEAwpmDpj8uTPuuKShKW5ypaalAVTWCF2sAFRtzXx3LJXtKK8QSk5OcAVZtplK3p7R0IzhKGxiA6aFZ1X/m8VRhuDx7s6pSyp7SaRSLxqRAKP04zLEwZfS5aep8Sdp363OwVCFlpbTCRCaPbrOV0myhPftxU3Gx7nqmy6S4dxAAEEodMP1xIb8X6VwRxWIb7isXoShtcUaSOXimrIyWZ0vyAgSg/uw2/RztlhXiyRqiNMpAkWpqJTkDgM/rQXfQx17uEvr8MzClVxIA7eBV1HK7DEQDSGQLTAWtYiydQ6FolI+hwVJlmfbdCrVGnwFAJOCF36voCppCvlAsOxKGxri4Acg+yeSLpu27haKBTDuGaqZiNa27ADBejCBpBBFIWbPvAmjPfeUiFKUtTqwkIqpXRvto351EvaAjoNRTygt1mepKhGYgwtmSmnSugEy+WE7anUpPmIscGr2QMXVcFcCKTTWxxHTx3l+2gnM/abR4mNdV6imlfXca9ULYlFLoDQd4bprCoYksdJGP9l0hkZGFMHP2XXlNW1p4U/GaybsAkMoXccDog29in+mP0zNNaeFtDEVpizOSzE6r2oT8XkQCXtq/Soymcgj6PAj5p0ec95ZEBC0VQryWfTcaQDyRa0+LjkUaVd3180zfFWqFsAV9nME5lfiUMUzVf6Y1tYKuiOp9Ewl4EfR52HtbxWgyW7NSCvDcVItqyy5FqTBRSrPuMjESRgvXtgw7StavlKZyBQxhAJ4J8/ZdXSmlKG0MRWmLU6uyBchKOy1yQi3hrumNBGAYaN9ZWxZI5wpIZAuTetsA6XXLFopIMM68YdVdP89qhKDPPwM1Fzl4btIMJ7Lwe9WkEQwD5d5bHkuaWLn3VvaNUkoCoWjfLTNSp7UA0K4g7qtqtGU37PdiaIw9pUBFYLJSGgcidSql2QIOeQaB8b2mPy6kK6W8j2oIRWmLM5LM1Qzw6Y9y1IlmJFk7LRWoCoDgxbp8vPRHpwcdAQynAaoqpfWOpwjt4Jp4IouQ34NwYPKKO2dwTka7E5SqtGDohSHupwpT7bsAMNgVLItVoq919SulvCeYjK6OrjiiBwdZKQVQWaC3JErbcVE/NVK/UpotIO4ZAMb3AyYdZOVKKUVpQyhKW5xYIjutEgGUKqUUEQB0n039C7V+TacTr1PZKofT8Hgqj3thpbQ5sUSu7rmJCxwVYsnpbhcuBE1HV0SrR1YNcHROmULRwFi6dk8pAPSGAxSlUxgaT0Mp4JQjemjfLaErpV2mgo5EaCWybSZKC3kgM9rQvjvimwfk06XRMc2hfdccFKUtjGEYsjIanX6D3B8JcF5iidE6iYQAg1eqqdUDWP0zqzbNe0p7wwGMJtl/C4iAn3osAayUTiVeowWjLxKAUqDgqiKWyKI76EPQV6m8075bYTwtc4Eb9pRywWwSB8YyGIgEsLg3jIlMHsl2E1c2KNt3A1bsu20mtNIj8lgv6ChXwJh/vvwwvt/UR4YDnvJ7SX0ci1KllFcp9YBS6k+ln49RSt2jlNqmlLpWKVV72Y44JpEtIFso1qxGDHCMRxmxONcXEQBouURVD2CN9F0AXORARZTWS9/tDUv/bTrH2PdaFUBAV0r5fdPEEtPFu9ej0Bf2s1JaxXAiW07c1Qx28Tqn0QurjXpKJzJ55Ao8N2kOjqcxvzuIBd1iCedYmEp/qLlKaZsGHSVj8linUprOFTDhnyc/mOwrDdG+awo3KqXvBbCl6udPA/iiYRjHA4gDeLMLfwepQbzGyAVNX8SPsXQeeV6AMJLKNrRbApJa2Ono42nqTY0+vmIUEhhNleYC17lglyvv7FFGPJGt3e8ekZvjLOe1ASiJ95q5AKwoVzM8kZm+YBYNIpUrsMKFysJqo2RwgK0q1QyNZ7CgJ4QFPcHyz51O2b4b6mBRqi25kfo9pcnQAvlhzNxYGG3f5ezpxjgSpUqpJQCeD+B7pZ8VgOcA+HXpJVcDeLGTv4PUpzx0vY5FDmAFMJ0rIJ0r1rw5BiqilPbdiuicusjRHfLB61Gs2kCOk56wf9Jc4GrKixwd/r0DdL97jdaCKCvvmnyhiNFUrvY5nL23k5Ck+eCk5wb16BxaeKv63etc6zj7dhpDYxks6A5iQXcIAHCACbzllP2omZEwpRC7tkvf1aK0QU9pOmTVvsueUjM4rZR+CcB/ANBL3oMARgzD0EfobgBH1nqjUuptSqn1Sqn1Bw8edLgZnUlcp6XWuPHro+USQEUc1KuUBnweRAPejhfvgCxydId88HsnnxY8HoX+iJ9VGzTuTwaq0pw7/MYvVyhiLJ1vuGDG40mOJ8OoiKtq2IIxmeFEFvNq2HcBhrABza91lQUz7isAKBYNHJrQopSVUs1EJg+/V03q3a6Hz+tByO9pw0ppY/tuKleALxCWnlOT9l2m75rDtihVSl0CYMgwjA123m8YxncMw1hjGMaa+fPn292MjqZeMA1Q6QPsdMtls2Aa+V2AlS3Un3kLMDFVM5LK1b3pAyq9pp1+PGlRXq+nFKCQACr7oG4gFPcRABEQtc5P+udhjoUx1VNa/bpOJ5bMIl80sKA7iL6IHwGvB0PjrJQmMnlT42A0XUFf+wUdlSultYOO0tmCiMyeI0xXSkNM3zWF+SNvOucCeKFS6mIAIQA9AL4MoE8p5StVS5cA2ON8M0ktyvbdOj2lAG/8yhfqOpYmQFaQeaGW46nWsQSU+ts6/FgC9Hih+sdSuW+rw4+nRucmLSQYdlQ5P9frKY0nszAMY9IM005kLJ1DoWhME6WDJTsv7buVa129RTMmzU9Ghxot6AlBKYX53UEcZNARJtJ5U8m7GhGlbVYpTcYA5QGCPTV/ncoVxI7bvQgYM1cpDfo8UIo9pc2wXSk1DOPDhmEsMQzjaACXArjZMIzXALgFwMtLL3s9gD843kpSk3giC6VqX4QG2LcFoPLvb1wp9dPSBBES9SqlA5FAWWh0MqPJ+qFZAHtKNbqqXrNSWhphRftudS5AjXN4JIBcwWi/Gz4b6NE487qm9JR2BSb9vpMZSWXRFZzefqHpY9L8JHRVVFt353cHad+F2HfNJO9qokFfG9p342Ld9dT+LqVypUpp92LTlVKlFMJ+L+27TZiJOaUfAvABpdQ2SI/p92fg7yCQntLesB/eGqErZYtch9/4jTTps9G/4+qxVK4aV0q5j5r1lHYFJRSq09N3G1VK9XO0g1faKwanBPgAVb233E/lSujURY5IwIugz8N9BHFnNLrOdYd8UIpJ8xotQHXI0YLuIO27ABLZvKmQI020HSulWpTWoFg0kM4VxY7bvRhIDAEFc//+sN9L+24TXBGlhmHcahjGJaU/bzcMY61hGMcbhvEKwzC49DRD1BslAEjSV8jv6XixpW2UvU0qpVw91j2ltffTQNSPkZKVsFMpFg2x7za48VNKoTfMIfXlJOcax5Pf60F30MfKO4BYqReylpODorSC3k9TRalSCoPRAO27kAXYRo4gj0fOTbzWCQe1KC2Ng1nQw0opAExkCpZ7StuvUhqrK0ozpVFm4YAX6FkMGEURpiYIByhKmzETlVJymBhJZhtehPoj7AMcSWXh9ai6cyUBidAfTeY6WnClsgWkcoW6o3P6IwHkiwbG2+3iY4GJbB5Fo7EVHJBAkU5fDGpUKQVK/ZIdfm4CRLxHA95yCEY1OvyI4r2+fRcABruCDDpC8/sBgOemaobG0ugO+crfvQXdIYwkc8jkO1s0JDJ5dJuYUappX/tu7ZAjLSrL9l3A0qxS9pQ2hqK0hYklcnV7AAG5Iez0nlJd2WoUFNIX8SNbKCKdK9Z9Tbujb3wbpe8CnW251FX3ngaVUv17VkqziNQRW0DJDs6bYwkXa9DHDTBBHajYd2v23jKEDYBuLah/PwDIrNJOPzdphsYz5X5SoNJberDDq6WJjNWgI2/7pe8m69t3a4rScZOiNMCe0mZQlLYwsjLaQJRG/R1/sR5JNu4BBKqi8ju4D7A8mqLO8UQrYdV4oWbHU4SiNJ6on+QMAAMRf0cvcGhiiWzNGaUAMFCewdnZN8mA7KfuoK/m7ETadwVJBjdRKe3wc5NGRGmo/LO28Xa6hXfC4kiYaKBNK6WROpXSrPxbQwHrojTk9yJJUdoQitIWptFcSUBXSjv7AmTqQs2o/OaVUloJm45c0LCntHGSM8ARQ5pYon6lNBrwIuD1sFIKse/qpN2pDHYFOt6+axiGuQXYiJ9BRyWGxtNY2FNdKRWBOtTBY2EMw0DCRvpuKldAodgm7U+FHJAdr18pzZZ6Sv1eIDofUF7zlVLad5tCUdqipLIFZPLF5j2lHX4BGmmSSAhU7JidLErL8xLrBR3RSliplDaoAALs2wKAWDJXV2wBHDGkiSXqh9UppdAfZUUZAIYnMvXHVUWDSOeKSGbbrFpjgUS2gHzRMNdT2uELZoCIr6GxDBb0VFVKy/bdzk3gTeeKKBqwHHQESGpvW5CKy2MT+24k4JWRMd2LLPWUMuioMRSlLYoWm/VuaACpRoymcu2zgmWDkVTWhH1X9mEnzyrVIqp+MI3sw06+Qdb2bjOV0rF0DsUO/t7FE1kMNFowiwaQzBY6ftW4UU8pIN9HzuDUrqDpIUcAyvbnTrbwludxm+wp7eRzEwCMpfPI5IuTekoHu4LwqM62745n5D6gy8JImK5SKNJEurNEaTkvoXuxtZ7SDr/mNYOitEXR4qBhT2nED8NAR1sJR5K55pUt2ncRS2ShVH3BJUPZVUdX3iuV0iaiNBKAYQDj7XKRtkE80aTfvfS7Tv7OpXMFJLOFhjbngSgryoDYd+c1sO/q13QqIyZGnwFSKe30cxNQqYbOrxKlXo/CvK5gR9t3E6XAIks9pbpS2i59pc1EabYq6AiQSqmFnlJt/yW1oShtUZr1AFb/rlNvagpFA+PpfNPKlhYZnSze48ksesN++Ly1TwlKKfRHOnuMx2gyh4DPUzdRVqOPt049nrL5IsYz+SbnJtlHndxXWrHMNxGlHbyPAJkP3Cg/oRLC1rliwkoIG9DZoX5ApW+0OugI0LNKO9e+q4WlNfuuXA8n2kWUJmPyWCfoSLt7woHSfUDPEewpdRGK0hYlXrZb1r8I9XX4GI8xk5WtsF8CRTq516ZRb5um00cvyMiFxscSwDRnbSVsZksFOnfBDGieeA2UvnMdvI8AYCwtLSj1ROlgydbb2fZdk/3udAUBAA6UhOeCnsmW8AXdoY6272phaSnoKKArpW0itkzadydVStOjQDbZ9KPDAQ9SuQIMo7Pt842gKG1RtNBsFiYCVARspzFiUpQqpdAb6exwmriZwesdvo/MhGYBFQtdp1ZKzfS7d9SIoUIOOPjYtKfNuF10gnq+0LmWL23LnddVp6eU9l1L/e7y+s48N2kqldKpojTY0aI0YUeUll7bNpXSVKlSatq+e4Q8mqiWhv1eFIoGcgWK0npQlLYo8XKwQaNKaWeH0+iKjSkhEfZ3dNBRLJFreHMMsGozmso1Fe5AVaW0QwV8vJTQ3F8nyVl+10GV0gd+AnzzHGBiaNLTzRKv5Xel3tsOFhG6Alrv/BQJeBH0eTpjgaMOlUppM1Gqe7k7d18BEmYU9nunia8F3UEMT2Q6NhxywpZ9tw17SpUXCPbU/rUOOgqU5FP3Ink0IUp16w/DjupDUdqixBNZ9IR8dXsAAfaU6hu53iaJhADHeMQT2YY2QgAd31M6kjJZKe3wnlIzFUAt3DtCSAxtAYp5YP9Dk56uiNLaFUD5XWe3YACVXtF6c0qVkoCaTrbvjqZyCJrod2d+gjA0nsGCniCUUpOen98TQtGQEUQtze/+Fbjpk5bfpi24diqlbTUSJtwPTDk2NOlcAR4FBPS9d4+ulO5v+tG6D5V9pfWhKG1R4k3mAAKyghzwejq2ujVqcvVYv6ZTRalhGIgl6weJaHQSaKeOExhL5UwtcPR0uCgti60Gixw+rwe94Q6ZwRnbIY8HNk96Ot4k8RroMJtzHbQtd7CJeB/u4KCjERPtF0CVfbdDr3WaobH0NOsuULHztryF97G/APdfDRSt2f4rQUcWRsK0m303GasbcgSIfTfs91YWNHSldGxv04/Wll9tASbToShtUeLJ5pUtPXx9JNGZFyCziYSAVFM7VUQkswVk88Wmixz9kQCKhgSPdCIjpYTiZoT8XoT8no49nsyMqwIkpK0j+t3jtUVpLCkzlL2e2ivyQCUEqaNF6YTOT2gs3jt5H40kc01nlAKA3+tBV9DX8aL04HhmWvIuUC1KWziBNxkD0iNA4iCwb6Olt5btuwHzldKQ3wOPajP7bp1+UkCst+XkXUBsvv6oqUppJED7bjMoSlsUEaXNb5D7I53bB1ie3WYmMTXi71wRYSKYBujsqk2uUEQiWzBVjQBkiH2n9m3Fkll0BX0I+BpfXvo7YQZnsQDEd8mf92+a9Kt4ornbpfyda/f91IBYIovukA9BX/3qzWBXoKPtuyOpXNMZpZresL9jk8E1Q+OZSTNKNQt6RKgeaOVZpdqZAQBb/27prROZPCIBLzwNFsqmopRCV9CHiXaZfZuKNRWlk2zySpVmlTavlLKntDkUpS2KmRsaQKc3duYFaCSVRXewcd+tpi/sx0Qmj1wHplxWgmmaVLY6uEd5NGV+gUO/rmMXORLZhlUtzUCkA6pbo7uBYg6IzgcOPQbkK//e4UQGg02/c50dVgeIfbfZfhrscPvuaNLcuCqgtADbwZXSZDaPiUx+2jgYAJhfSngeamVRqp0ZkUFg6w2W3prI5C2FHGm6gj5MtM1ImBEgXN++m84VKsm7mp4jzPWUlt6Xpn23LhSlLYoZ+y4gNzVtf+NXh9Fkrtzf14xOHuNRHuHRREgMlK2EnbePRk2OF9J08oiheDLXtOoOlCql7X5u0jeIJ14sYUeHHq/8KpFreg4P+iQhtBO/c5rhiYyJfvcg0rkiku0StmIRs8ngQGe7goDqcTDT7bsBnwf9EX9r23dj2wEo4IzXA3s2AIlh02+dyOQthRxpokFfx9h3k9kp9l1AKqVmekpL70tSlNaForQFSecKSGYLTS/UQGXOXScyYuFC3ckBEOWZt816ADu4aqOPC9OLHJ1cKU1mTbk4OmLEkLbSnfwCeazqKzUTLgbohcUWrtw4JJbIYrDOjFJNeVZpq1p4DQPITNh++0gq27SHW9MXDnT0iCEdYlQr6EieD7V20FFsu1TuTn4BAAN44ibTb004EaXtsCCUzwLZCSDSwL6brVEp7V4slVKjcQhkmPbdplCUtiBmZ5IBpTEeHZqYajaREKiEsnTirNKYWVEa6Vz77piF0Cz9uk4VpbFE1lylNBJAOlds7yTC+A7AGwCOeYY8HngYgCRei83ZhHiPBBDrwMUyjVn7rn5tS7Llj8DnlgPjByy/NZ0rIJ0rmm8t6GAXB1AJMapl39XPt7Yo3QEMHAssXi1tAxYsvIlMwVLyrkbsu20gSlNxeWxQKU1PDToCRJQWMpX314E9pc2hKG1BzIxc0PRHJTF1vF2a0C0wmjKXSAhUxEYnCol4MguPal4FjAS8CPg6c8SQDgZhT2lzTIutUuW9rY+n2A6gbxngCwLzTypXSsfSeeSLRlOxBZRGMbWq2HJIsWjIIofZQKhWrSjvvg/IJYGdt1l+q9XWAlkwy8JoUtVpVxrZdwFgfncQB8da3L47cAzg8QDHPxfYdqMErpnAvn3X2x723VRMHpul707rKV0sj00svJxT2hyK0hZEBxeZsevohN62vvGrw6iFREJ9Qe/EFeRYQqxfjUZTAJKyNxDpzBvkysxbk4scEX951E4nkc4VkMgWTCWD633Z1sdTfIfcIALAopVlUWrWMg/IwmKn5gKMpXMoFI2m9t15pd+3rH330FZ5fPIuy28tO6fMLsBG/MgVjI7taxsaz8DvVXXPUQu6Qzg4kWlN0Z4ZBxJDQH/pnLP8Aqne7dlg6u2JrL2gI+kpbYPjqVwpbTCntJYo7T5CHpuEHXFOaXMoSluQSjCNuRsaoPMsl4ZhlGa3mR/hAXSmKDU7XgjQN8idt490D1ZPyNwFu7dDK+/6+2O2pxRo43OTYQCxnZUbxIUrgIkDwMRBS+fwjkgproO24zarKA+0un13uCRKd91p+a2VRWqL17oOOzdphsbTWNAdglK1F2EXdAeRKxitOUNZ97APHCuPxz0HUB7To2Gcpe+2Q6W0uX03lS0iVCvoCGg6Fob23eZQlLYg+mRpdk4p0ObViBoksgXki4Zpu2V3yAelOvNCHU/kTN0cA2K5bFsR0YDRVM70eCEA6O3QHmVLrQXlNOc23UfJYSA7XqmULlwhjwc2VSqlJhcWU7lCR66u68pns/NTJOBF0OdpzWOpkAPiOwF/FBh6BEjGLL19xOq4qrIrqAX3lQscrDOjVKN7TVsygTc+RZSG+4Gl60z3lTpN323J6nI1+rsXsTgSpixKG1dKvR6FgM9DUdoAitIWRN/QmLESDpTDaTpLbFldPfZ4FHpCfox24IXa7HghoBSc1Yo3fg6xMl4I6ORKqXmxVa6UtuvxpKsW5UrpqfJ4YLPpCmD1azpxMUj3iOp03XoopTCvK9ia9t34ThkXdOpL5een7rH09lELwYdAVX5Ch90TaIbGMnWTd4FKr2lLziqNbZdHvRAGSF/pvo1NQ7TyhSLSuSKiAXuV0nzRQKbV21WaVEoNw6ht3/UFZS6smbEwfi/nlDaAorQFiSez6Ar6EPA1/9/X16FjPLSNsNdknw0gF/VOrJSaCRLRtPQYD8MwHfgwFStzAIHKjV+n2cGt2FJ7w34ohfZNli1XLUo3iNF5QNci4MBmy5VSoI0ryg2oiPfGPaWAHHPDrRh0pGfXnnYp4PFbtvDqEDbz/e6079ZL3gUqo2JaMoE3tl0Sd4PdleeWXyiP225s+FbdE2o3fRdA61t4UzHA4wMCXTV/nSsYKBSN6em7gPSVNqmUAiJKWSmtD0VpCyLpliZtqUEffB7VcavsYxYTCYHOHONhGIbpuZKAVEpHUznkCy24Inr3N4Avr7YlTEdSOdP2OKBzK6VWAny8HoW+sL99F8z0EPu+ZZXnFq4ADmxCLJlFwOtBtNbNzRQGOlmUTmjx3vy7N9CqgVA65GjRSuDIp1kXpckcvB5l6lgCOnsmdzZfRDyZq5u8C7S4fVePg6lm0UpZDGti4Z0ozRm1a98F0PoJvKm4hBzV6TfWYjI0tVIKiIW3SU8pIAm8qVwL3j8dJihKW5B4MmfabqmUQl9pVmknMWJDlPZGAh13oZ7I5JErGKZ6AAG58TOMFhVbO+8ARp8EhrZYfqvlSmmHpjnrECyz+6o/0sKV92bEdsgQe3/VDfDCFcDBRzE6kUR/1F83bKWaTp4PHEtk0R3yIehrLrgGuwKtad8d3gpEFwChXmDZ2WK1zCZMv30kJYF+Zo4loOrc1GH97gBwcEKPg6lfKY0EfOgK+lrUvltDlColKbxP3AIU6otGLSi7TIb5VdNVqq62fqU03nRGKYDp9l1AxsKYqJSG/F7JB3jqXuCaVwObftvw/0unQVHagljpAQRK4TQdlphqNSZfXtt5ldK4RRGhX9eSPcpDj8ijxZ4tQI4nK5XS7lCHVkqTIiL8JgOh+qOB9g1cie+o9JNqFp4KFLIIjOzAgAlLKlDpKW3JKqBDhhNZU323gOyn1rTvbgPmLZc/H3WO9JfuXm/67aNJ86PPALkpDvo8HdlTeqA0f7SRfRcQ0Xqw1ey7uRQwtnv6OQcQC29mFNh9b923a0FpdyQMULIAp0eBP18BbPoNkG+xc1Yy1jDkSIfNhQM1rm/di4GJIQkua0Ak4IXKjAG/fjPw2F+BX78R+PJpwB1fBlIjTra+LaAobUGsjPAApIekbasRddCrwFYtl217g1wHKz2A1a9ruapNNimBIoCsUFrAMAyMpXKW+pO9HoWekK81Rekf3wdc925bb7XSnwyUKqXtumAW2wEMHD35uUUSdtQ3/hgGTLZg9IT98KjOywUAgOGJjIVzUxDpXBHJbItVHQ49XhGlS9cCUJbmlY6ksqZHn2n6Iv6Oc3EAlfCiRvZdQERry9l347vkcWqlFACOfZb0Sjaw8JYrpU7tu7d9Abjvu8Cv3wR86VTglqtMBQDNCVIjjcfBNKqUdi8GYIgwbUDY78WlsW/KAsKbrgcuvUZyB/7+X8AXThFBP/yEg39Ea0NR2oLEEznTPYCAJPB2mtgaTeYQ8HkQ8ps/xPsiUiktFls81twCVgJXgBYe43HoMQCGBBg8dbelt6ZyBWQLRUsLHICMXmhJUfrYX4HNfwCK1vte7Lk4WuxYMkNmQobYT71BHFwOePxYmHrC9H7yeqQFo2VncDoglshisMtkRbmU0NtSFt5kTMJVBkuiNNwnCxe77jD9ESPJnOmQI01fONCZ9t2S0Gxk35Xfh1ov6GjqOJhqQj3AUWc3nFeqRand9F0AyI/sAe75FnDqy4HLfgUsPg34x2eAL54K/PJyYMdtEjg4V0nFGorSZLZRT+lieRzf1/CvWJe7B+enbwCe/n7gqHXASRcDb/gT8PbbgFNeBNx/NfDVpwE/fxWw/da5vb9mAIrSFiObL2Iik7d049cf9bdvNaIOI0lrfTaAVEqLBjDe6n0RFrAyVxJo4TEeuo/01JdJxbRJPH41ozb6k4HSjV+rLQYlDgET+8Xqdegxy2+PJy1WSktpzi0/324quio/1UrnCwDzT8TS3HaLFeXOnA9s1b6r39My6JAjXSkFxMK7e31TG6BGX+us0NupldLxDDwKTRc6FnQHMTSWaa3zUq1xMNUsvwA4sAkY3VPz1xOl9F0nldJjN39VggTP/0/ghAuB1/wKeM/9wNnvBLb/A7j6EuAbZwP3fhfIjFv+e2Yckz2lkVrCvceEKE0M4/WHvoBtnmOAZ145+XeLVwEv+Sbwvk3AMz8k54Afvwj45rnA/T8B8i22SGITitIWw8ocQE1/qVLaUidYh1gNpgEqUfljrVjdsknc4vFUrpS22g3y0COANwic9mr5uUFvzVQq44Us3vi1Yo/ygc2VP1u0OQMlF4eVSmkkgGy+WF6BbhumjoOporjgFCw3dlkSpYPRYOu5ExxSLBqWx1UBldmmLcFwSZQOHl95btnZQC4J7HvQ1EeMpqz1lAKdmZ8AiH13sCsIr6fxYvWCniBSuUJrBffEtktYVj1R1WQ0zERajgdbI2ECPhyn9uCYp34HnPkWoP/oyi8HjgUu/BTw748CL/q6zPT8yxXA508Wq6pewJttcmn53jWy72ab2XcBjNURpYYB/PkDiBTH8XHPu2WBshbdC4Fnfxh4/2bZXwBw3b8BN37C7L+kpaEobTF0wIzZyhYgF+t80eioCqD02Vi1NHVeYmo8mS33P5ohHPAi7Pe2YKX0UWD+CcCRZ4g4fdK8hbdcKbVTjWi1Gz8tSv0RW6JURIT5/dS2MzhjJVFaI3Qk2X8SFqsYFvuTpj+uvwPD6sbSORSKhmn77rzS61rKvnvoccAbmDw26Khz5NHEaJhcQZxTlq91rdpa4JCh8XRT6y5Q6TltKQtvbLsIwHrusPknAb1L6/aVJrJ6TqmdSqkXH/T9EjlvGHjGFbVf5A8Dp78WeNutwFtuAk56vlhVr3m15b9vRkjF5bFR0FGuQdBRZJ707darlG76DfDI73HLorfg4cLS5tvjD8n++tc7gGOeCez8Z/P3tAEUpS1GrDwH0FrQEQCMdNBNzUgyhx4bIgLorKj8WKmyZcXmLPMAW+xYGtoCLDhFVmmPON2S4NKLFJaPp7C/9RIuD2yW4evHPMNSNRmQVeRUrmCpv61tx53Ed8iKe7hv2q9Gek4EACzN7TT9cQPRzusp1f9es/bdgZa0724TIeGtEgLdC4GB40yJUjvzuOX1LTr+7J7vAD97pe0+u6HxjElRWppV2kpjYWqNg6lGKeD450qfYo1U3IlMHj6PQtBnXRb49q7H87z34e5FlwHReY1frBSwZA3w0m+LTXXoEUnsnW20KDURdFSzp9TjkXmwtUTp2F7gzx8AlqzFhqWvK3+OKZSSe5ahR1svzdgGFKUthh37rq5ctJzl0gG27LutWilNxoCbPyWR8BaJW6xsAaWqTSsdS+lRSbqbf5L8vHStzALMmUtXtH3jV7LItZRt/sAmmaW5dK1UcZIx02+NW0xylte28IihRsS21x7NAOBAWKyai9LbTH9cf2nWdEsdSw7RFU+zx1MkIKNOWqrqPrx1snVXs+xsSeBtEjZmZx43IAtmqVyh3CPXMmz+HbD1emCHvaqRiNLGybtAZWRMyyTwFnLAyJN1zzllll8IZCdqpjsnMnl0hXyWFqgByALB3z+GQ+jDzX2vsPbexafJ4/5N1t43E6RK1zq7c0qB0qzSKaLUMCTNvpADXvIthALSslKwEqi5eBVQzAEHHzX/nhaForTF0MLSSt9WX7tWIxpgN/wBQOtZLjf/FvjnZ4EHf2H5rbFk1nJyo4zxaKFjaah0Il9wijwedRZQyIowNYGd8UL69fmiUbZFzXkKebnoLTwVWLJWnrMwL7Hi4rBRKW2l48kMsR11A0eGCj04ZPRgYPxx0x83EA2gUDQwlu6cFgzdG6pTdZuhlMK8riAOTbRIdauQk8WL6pAjzVHnAOmRpjehdvvdtYhtqfyEYhHY/5D8+Z5vW357oWhgeCLTdEYpAMwvCdeWmVU68iRgFBpXSgFxwHgDNS28E5m8reRdbL0BePJO/CTwSsTz1u4lsGiVPOr/r7NJuVJqZk5pHVHavWh6T+mGH0of7wX/DQweVxa0lhaEyvvpYfPvaVEoSlsMfRGysjI60K43fnXI5LWN0LqIAIDRVhPvezfK4/ofWLY1xRNZS/3JQCU4q2U4WEreXXCyPGrB9dQ9pt4+msrB61GWUwn18dcyvVux7UA+LaL0yDMA5TW9j4DKuclapbQNe0oLOWC0zhB7AMPJHB4tLkV0xHy6ccumXjugYt8111MK6NaCFtlH8V1AMQ/MO2H675aV+kqfbGzhHS0tmNkZCQO02AJs7Amp8vUfAzz2l0rftkmGJzIoGs3HwQBAT8iHoM+DA2MtUiltNA6mmmAXsOzcmmFHiUzeevJusQDc+HFg4FjcHLm4PFbGNN0Lga6FwL65JEpN2Hd99UTpEcD4/srPse3A9R+VObFr3iwfXxK0liy8A8cC/ihFaSOUUkuVUrcopR5RSm1WSr239PyAUurvSqmtpcf6/4c7mZv/B3j415bfFktkEQl4a3va61Dp22qhC5ADtAjotXihDvq8iAS8rSMiNHs3Ah6/rDbu2WDprfFk1pIVHGixGz9A+kkDXRLyAABd8+Ukb7KvdCSZQ6/F8UJAZZGjZQT8gZKFauEKIBCVeYkW+kpjZfuu+cWgnpAfHtVmLo5y1aK2KI0nsthiLINv+FG5qTNBfyv2SwJyg/alVcCu6XbBZmj7br+F46mlzk3l5N0aldL+oyXNs0lfaXmR2maltKVaVXQa8cWfBTxe4L7vWXq7Di2ab8K+q5TCgp5g6wQdxeqnfU9j+YVSgY/vmvR0IlOwnrz70C+lJ/Q5/4lwKGQvrXjRKtNJ0zNKsrl9N5UrIOjzwFMvvbl7kYxTyybk3P77d0r40Yu+Lj2nqPSjpqw4qDxeuS7PhYryDOOkUpoH8O+GYZwC4CwA71JKnQLgSgA3GYaxHMBNpZ9JNbkUcPsXgD++b/KqigmsDqcHgO6QD16P6phV9lGbF2r9npa6UOdSclFY8yYRXvd93/RbDcNAPJmz3lMaCWAsnUeu0Ljfac4w9Agw/8TyRQEAsPQsSeA1UVkeTVm3ggNAb6ka0TKLHAc2S3V0vgTxYOk6YPcGsfWaIG7DvuvxqNazgzcjXj95FxDxvsN7NFQ+XZkt2ISWdbvsuA0Y2QX84/8svzWWyKI75EOwXlWiBoNdgdZJ3y3PKK3RU6oUcNTZIuYbnKPsOKeAFlwwA4C9D0hy+rHPAk55kcxuzEyYfrvuD11owr4LSAJvywQdxbZLYnrXwuavXX6BPG77+6SnJzJ5a8m7uTRwy/8Ai1cDp7wY0aAXiawNUbr4NBHJJjMeZoxUXKzNgWjdl6SzhfrWXQDoOUIex/cDd31denf/5dNA75LyS2zZdwHpK93/sO2Qr1bBtig1DGOfYRj3l/48DmALgCMBvAjA1aWXXQ3gxQ63sf3Y96DYdrLjwA3/aemt8UTW0soxIDd+feEWC6dxgLYkWe2zASRhtaUsTQc2S1XmmPOAVa+U/lKT4TRj6TwKRcPyIocWsS0j3oe2VKy7mqVrgeQhU6JgNGU9yRmotoO3yH46sFmshL7STduStUAuIaLeBLFEFkpZ/971RwPtdW6KNbbSxRPZctiRWTtW2ebcavtJOze232q5GjKcyJpO3tUMRgMYbpU5pYcelzES9Sozy84BxveKqK/DSCoHpYDukM1KaStd6/Y9KNUirx9Y969SkXrwGtNv1wJzQU/zSikgNt+WCTpqNg6mmsHjpRK/dbIotWzfve97wOhTwAWfADweRIM+JDI28hMWr5J7GJPXmRkjFZPvYoN9mMoV6occAVIpBYAnbgZu/iRw0iXAaZdOeol+vyX7LgAsWglkxubOXNcZwpWeUqXU0QBOB3APgIWGYehO3/0ATCzddBg6POSMy4GHfwnsvMP0W+NJa8PpNW1349cAu6vH+j0tIyIAWT0GJDJ8zZukJ9DkhVpXXaz0AAIVK2FLHE+JQ0DiYCXkSLN0nTyasPDaSXIGWrCn9MBmuenTLLXWextPZtET8sPntXZZ6Y/426xSuhPwhSs3KFMYTmQx2nWsVKX1XNgmtGxP6Z710qMc6ALu/Jqltw5PZCyfmwaiQaRzRSTtVGwON8PbaveTanRfaQPr82gyi+6gOKGs0HILZoYhfYdHrJafl6wBjjgDuPc7TROKNWX7rsm5tyJKW2SBI7ZDhKYZlBIL7/Z/TKpOWqqUpkeB2z4HHPccqVwD6Ar6MG4niG2uhB2l4g1DjgAglSs2EaWlSun1HwGCPcAlX5omcss9pVYDEBetlMc27yt1LEqVUl0AfgPgfYZhjFX/zpD8+pq1ZqXU25RS65VS6w8ePOh0M1qLPRukv+15nwZ6jwL+8kHzFjkb9l1Abvw6Zfi6tiRZHSiu39NSc0r3PiCr7T1HyklryVrTgUcxG+OFgIqVsCWExNCUkCPN/JOAYC/w1N1NP0L3lFqlbJFrBVGaHgVGn5wsSvuOEjvY7vtMfUQskbUsIgAdnNUC+8gs+gaxzop7PJlFdzQqgsSkKI0EvAi02riTfFaExLHPAs54vQyPH3nK9NtjiSwGTQoIjU7qbQkL76Gtta27mvknA6E+YFf9ReuRVM5yyBEgAsLrUa1zrYvvkMqoHiGiFLDuHVJt3n6LqY8YGk+jP+JHwOQczgU9IYyn83N/bE6xIPunWchRNcsvBPKpScfWhJVK6R1fFhH33I+Xn+oK+qwHHQFyrgz2zn7YUWqkYT8pIEKyYZ6LXogsZIAXfEnyK6ZgK+gIkIV15Z198T7DOBKlSik/RJD+zDCM35aePqCUWlz6/WIAQ7XeaxjGdwzDWGMYxpr586f/j2tr9qyXdMtABHjeVcDQZuC+75p6a9zBjV9LVLZcoBJ0ZK+61VI3yHs3SpVU3wCf+WZZgTcxx61cKbWavttKVRstSudPEaUeD7D0TPOVUhuiNBLwwu9VrVEpPVCyTi08tfKcUlIttVAp7bfxnWupcBozxOuPgwGAeCIn36GFK0yLUqUUBlqt9/bAJrk5O/JpwFn/Ks/d/U3Tb7dr39XvndMkY9I+UCvkSOPxyPiqGjMlNSNJey4OpVRr5Sdo6/fi1ZXnVrxEFs3u+ZapjxgaMzejVDO/lNI75/tKx/bKiDMrovTopwO+UNnCaxgGEpm8uaCjsX3AXd8ATn15ZZEAQDToQypXsDZ/E5DrzKKVsx92lIw1FaXpXJOe0lCPFAhWvwY4+QU1X2K7p9QfloVMVkproySK8vsAthiG8YWqX10H4PWlP78ewB/sb14bMnFQ0hmPXCM/n3QJcNz5wC1XAeMHGr41XyhiLJ23dRFqSVFaLAK3fcHS6jogIsKjgG6r8eYQIdsSIgIAskkZd3LE6ZXnTnmxnFjXNw88itm077ZUf9vQI1JtqGWlXLpORGtqpO7bi0UDY2l7lVKlFHpb5cavOnm3miVrxY46UXNtcRLxRM7eglmptcBohwAHwyhVSuuL0pgWWwtXSHW6wfFXzUCrtWDoftIla4C+pcCpLwPuv9rUv7dYNGxV3isjhua4kBjeJo+N7LuAhB0Nb6v7/RtJ2Ts3AXKtawkXB1BJmK92vPgC0rKy9QZg+ImmHzE0bm5GqUaPjpnzfaVmx8FU4w8DR59XnleazhVRNICuoIlj6R+fBoo54DkfmfS0rrLaDjs6sNl0GvmMkIoDkcaiNJnNN7bvAsC77gVeWL9VQb8/aWd+uQ47amOcVErPBfA6AM9RSm0s/XcxgP8DcIFSaiuA55Z+JprqCzUgq0T/8hlJUf37fzV8q76A2L7xS+Ra68Zv7wPATZ8A/vBOS4lj2m5ZN7a7AX3hADL54ty37AClJLZipc8GAPwhWaV79M9Nk531Da7VRQ79+paolB58tGR7qXEsLF0HwKj0eNdgPJ2HYVgfL6TpDftbY0D9gc0i3nV6oMZC763d1oKBSAC5gmFvnMBcY3y/2OLqVEpTWZmhLJXSUlXaZMBHy1WU99wPROdXRjGd826ZM7nhh03fOpbOoVA0LNt355Vef2iu23fLybsNKqWAzJQE6lZLR5NZW/ZdQJLmW6andN+DIkh9U46Hp71RxOo93276EQfHM+Xq5ySeuAX443unCVtdVZ3zfaU6rM/MOJhqll8os1+Hnyife7uaVUoPbQXu/7EsBkwRwbof1ZaFd/EqOW/q78VskGpeKU3lio0rpYDMgvXUl1a27buAVJTH9gCJYevvbRGcpO/ebhiGMgxjlWEYq0v//cUwjGHDMM43DGO5YRjPNQzDXBRop7BnvfjCq2wPmHe8XLAf+kXDUAMtAuxchPojfmQLRXurM7OF7nfY8U/goWtNv83R6nE5Kr8FLtbVIUfVrHmTpDvf/5OGb48lcvB7leWB2UGfF9GAd+7PvTUMueGf2k+qOfJpgPI0tKfqnisnx1NL9G0d2CQiaap4X3ya3PQ1mVdqGPYqW0C1HXyOH09mMDEOBihZ5heVRKlJC29/y4nS9aXvWOmYWrxK+kvv/haQb3yjr+23Vu27lUrpHN9Pw1vle9W3rPHrFp8moVl15pWO2GwtAOQ+oiXOTYYB7Ns4efFV071QKvAbfwakx6b/vvwRBobG09PtuwcfB659HbDhR8DX1wJ/vkLcbEC5qjo0NscrpbHtMsqk50hr79OjYbb+vSwkmwYd3fTfUmV9xn9M+5W2/toSpbMddpRLSUhkk6CjdLP0XRPYmlOqKYcdtW9fqSvpu8QCu9dL5WbqLKRnXAH0LAH+ckXd0CMtAqz2AAKVG785f7GuZtcdshq35ExJMzM56mQkmbVd2apE5bfAftq3UXpquhdPfn7wOODYZ8uFtoEdJp6QypYyEyM/Bam8z/F9NL5PAnzqidJglwixBqJUW7md3PjNeTt4sSg9pVOtu4BU3o9Y3bRSmsoVkMkXLYdmAZURQy1hB29GkyH25Vmu0YB8b8P9Fet0EwZaKaU4PSohNLpNRXPOe4CJ/cDDv274dh1UZHWRIxLwItgKgVCHtsox4m0iAnwBcVXVEKXFomE7GRxooZnco0+JtbJ6Ib+adW+XCvzGn9f9iHgyh1zBKFtyAcgx+ovL5Bz31lskjGv9D4CvrAZu/TQGfFn4PKo1KqX9RwMei2Jp4Bjpad7293KltK4oNQy5Bmy5Djj732oG+OjF7Qk7Y2HmnSA9rrPVV5qKy6OJoCOnotR2Tykw++L9MEBRejgpFoG99wNLnjb9d4GohB4d2FS3HzCWsGe3BCoD7VviIgSImNp1lzTkX/IlOWnc+DFTb7UbTANUxEdL7Ke9D0wOOapmzZuAsd3A49fXfXs8aa+yBZSshHNdRGhbZD1RCkiQyO71dReC9HFgJzQLQGv0lI7slHmktUQpIH2lex+QNNU66HOTnaAj7fxoqX7JesR3SPVdW1anEKuuAColiyL7TYrSaBBj6TxyBXMjMGaVPffL45FnTH7+uOfIv/nOrzZsydA9oTpN1yxKKczrCuLQxBwXEoe2Nu8n1Sw7R+4LplQCy60FDnpKW8K+Ww45Or327488Q9oM7v123fEwui+03FNaLAK/e4d8X19xtXzGJV8A3nUPcNyzgVuvguerZ+Ct4VtxaCzh9r/IXWI7G/awN2T5hcCO29C7/su40ncNTnvgY8Cv3gD85CXAd54NfOUM4DPHAZ+cD3z/Akn6P+ffan6UI/uu1yfFmtkSpbrg0dS+2yToyAR+r4LXo+zZdyMDUrxq475SitLDSewJWZ07soYoBYCTXygVrpv/p2awgR51YkdItFw14sBmiYBf9nSxuZ39TullaGBv1jhZPe5tldmSmQng4GOT0wirOfFiqcQ0CDyy2wMIlIKz5no1YuhReZyavFvN0nUiyIZqWyidVkp7wy0QnKXto9XJu9UsXSvWpgYXQm29tdtTKp8xx48nM8R2AL1LpMJV69fVlVJAFgKGHjE1a1Gfw+f8IgdQyU6YKkqVklaVg1vKyZ+1qNh3rfWUAi3Qe1vIS3VrsME4mGqWnSPZAVPcCuVzk+2e0gDGM3nk5/oix96N0vK08JT6r1n3dtmn22ofUzpBt2zf/edngcf+Alx0FXD0uZUXzlsOvOqnwJv/Dgwehw8Vvo33P345sOWPlnItDhuGIf9uKyFH1ZzyIqCQwdIHPo83ev+KwT03ySJZekwE2uLTJEX2nH+T8S+v/yMQ7K75UZVKqc1sgMWnSQVwNvazrpRGms0pbTISxgRKKYT9XqSyNr93bR52RFF6ONGBKlMtTRqlgIs/C+SSwI0fn/br8lxJGxehvnKldA5frKvRdiU9QPxZH5bqw5/e37BiA5Ri8h3YLYEWGCq+/2EAxvR+Uo3XJ3akbTdVLIVTsNsDCLRKpXSL2Jujg/Vfs3StPNaxp+pwMSc9pePpvPWY/MPJgc0AFLDgpNq/1/uoQV9p3MGCWUu2FtSjybzA2NQxTAtXyPk+Xvs7Wk1L7ac9G0R01ao8nPoyGTJ/51fqvl3bd/ujbThiaGSXpJc2CznSLDkT8PimzSvVLSb2r3XyvrH0HA8Y0yFH/nD915z8Qjmm6owc0hbcBd1B4LG/AbdeBZz2amDt22p/3tK1wBv/iq8u+CSyRQVc+1rgBxcBTzafa31YmRiSRVW7ovSodcCVT+GPL3gAJ2Z+jF1vfAB493rgrTcBr/st8IofyrzN534cePr7Gy4M6ErphN3jafEqKdqMPGnv/U4wYd8tFA1k80XH9l1A+kptVUoB6Ss99LhMX2hDKEoPJ3s2AIEuYP6J9V8zbzlw9rukcX/KjfJIMoeQ32PLPqBvgub0xbqaXbcDfUfJKAFA7M0Xf1ZW2O+qH7dd0CM8HCQSAi3QU1oOOVpd/zVnXC5Wwg0/qvnreDJn66YP0JXSOS7chx4B5tcRWprepXIzU+dmQyfn9ji98ZvL1dIDm+SmZmqfu6bnCNlPDXpvtSi101PaE/LB61HtYd9tMg4mnszCo6oWOXR12kTYUcucw41SonW9xVevX+aW7rytch6bQiyRRXfIh6DP+rVusCtQFrVzEj0OptGM0moCUakiTUng1RVz2z2lOj9hLn/vdMhRvX5SjdcvM7q331JxyFSh7bsLc08Cv32rOIwu+WLt1heNUti3+Nl4BT4HvOArQHyXCNNPHw187UzgB/8iYvVP7xd32z3fBjb9Btj+D+nRbxC85Bp2k3erCfVgPC+CsmnQUQMcjYQBgEWl/8ez0S+Z0vbd+pVS3QMaDjiXTeGAx/6Eh0UrxTmhZ7C3GRSlh5M966Wy1awh/RkflCS1P//7pKCaWMK+3bIn7IdSmPuJqYBciHbdWYnD15z4LzLX9R+fkdmJNRhP5xz12UQCXvg8au5b5PY+IPbcWvM3Nb1Hyj574CfT0i4LRQMjyayt0CxArIQTmTwy+Tma5lwsVsbBNEIpWRWvVylNZhHye2xbdsppznNalG6u30+qWXIm8NR9dX89rQJoAaUU+iMBxOb6Ikcz0qNyc9PgBlGfw8vjquafJAtHZkRpV4v03o7uBhJD9dtUAOBpbwCCPcAdtaulw3qWqw0GowEMz+U5pYcel0ezlVJA5pXu2QDkKkmwIylnorQlzk3j+4DEweaiFJBjyhsE7v3OtF8NjWWwMJhF+DeXi4B91U8bV15LLOgOYihZQG7164D33C/j+059WWnMmEd6gx/5g9iB//ofwK/fBPz4hcA3zwa+cIrpGcS2sTOjtAam03cb4Ni+u/AUsWnvmw1R2rxSqiubblRKxb5rV5TqsKNZ6r+dYShKDxe5tHj1G12oNcEu4MJPyYrR+h+Unx5x0APo9Sj0hf2t0bd18DEgOTxdlAJyUfB4RbDX6D0orx7bFKVKKfS1wlDxfRvrW3erWfMm2Zdb/jjp6bFUDkXDXmULqLxvzor30SfFFtko5EizdJ28fmzv9I9J5dAXtrePgMoN45ztK81MSHWvXj+pZuk6Cc4a3VPz1/GEVADtVpQHoi1ybmqEtsk3qJTGEtnJ37lABBg4zlQCb8tUSsuzuBtc60I9IiIe+b1UoKYwPJFx0FoQRDpXRNJuxWamObQViAw27V+bxLJzgUJWghJLjCb1uCq7SfMt0KpSDjla3fy10XnAylcAD15TERklDo2l8HnfN2UW6St+VHFgNUH3oB6ayEjFet3bged/Hnjl1cAb/yzBSP+xHfivYeCDTwDvvBt4/Z+AC/8HyI4DT9xk4R9rg9h2EXJ1gtXMUk7fDdgXpSG/Bx5lM+gIkEWCeSfMTthRMiYLGg0WKrSIdNpTCpREqd1Kad9RQKi3bftKKUoPF/sflj6SJXUsTVNZ8RLgmGcAN38SSBwCoG9o7N30ASXL5VxfZQcqvTO6n7Sa3iOBZ38E2HYjsPl3037tdPUYKIXTzOULdXpMbmzMiNJjny03yfdNDjxy0p9c/T5LN8iZCeAv/yGVlJlGW1uaVUoB6asBatpTR5L2Z94C1XNv5+j37uCjAIzmldImfaWxZBZ9kQC8ngZ2uAb0R1qgR7kZ5apFY1E6rZq8cIUpUdrXSqLUG2i+0LHuHVJtuvsb034VS2Qx2GU95AioJPbOWQvv8Dbz1l3NUWfJY1VfaTkZ3GnS/FxuVdm7UY6RRU2OJc26t8ti5AM/nfT0ufuvxtML98hi/zHPMP3X6xEyOiipLh6viOIFJwPHnCf29PBAw/R7V4htF4FdJ1jNLIlMHpGA1/b5G5AF/WjQh4SdkTAaHXZ0uEnFZZGogZ27Yt+d5Z5SpaRaOhsV5cMARenhYk+TkKOpKAVc/DkgmyiPQhlJ5myLCKA0W7IVbvx23SHW1HqWlLVvky/l364Uy1wVoy6I0jk/W3L/QwAMc6vHHg+w5o3Ak3dKn0uJ+NQUUIv02xnjcfMnJba/qvo/Y+hxMI36tzWLVsmA+hoW3tFUzvY4GKBSxZizx5MWQ81E6aKVdfcRIOm7Tr5z/ZHA3BXuZtH9Xf1H131JPFljYXHRqdKOkBlv+PEBnwfdQV9riNJFqwBfE1HZe6RUtu7/8bQZ1E7tu/oz5iSHtgLzTCbvaiIDkiJelT4/ksohGvAi4LN3G1fpKZ2j5yZAqmbzTqjf7z6VxaukqnzvdyqtT4/fgFdN/AT3dT9XxKIF9AgZy7NKPV5g+QWSMN1gVrhjmvSwmyWRzTuy7mq6gj779l1A/v+N7wMmDjreFkuk4qbGwQAu2XcDXvs9pYBcjw9sntlja5agKD1c7F4vgSo9i82/Z/6JwFnvlFW/R/6AmAP7LiAzBOd8OE25n/Sc+qtWXp8kwk0MATd9ctKvRhxamoDSUPE5vXpsIuSomtWvlcrFhh+Wn3LSAwhUUlZNH0+710sQhPIAW/5k6++0xNAWsTSFepq/1uuX0RU1KqWjKXcqpXNXlG6W8LW+ZY1fV95HdSqltSqAFuiPtkFPaWwHEJ1fd2QCAMQSOQxMHXOiK4omgisGuub4wmIhL+cnM20qgIyHySUnLVQVi4bjZHCgMut0TpEakX5bszNKq1l2tnz/SjeiI8mc7XEwANAdkpyJuS1KN5rrJ61m3dslwfWxvwLDT8D4zZvxqLEMNx7/kcbBRjXQ9l0dlGSJEy6SHnM9dWEmcDIOpoqJTKHcE+oEqZQ6EKWz1S+ZijcMOQIq9l03RGkk4KCnFJD9lE+JHb3NoCg9XOxZ37jHph7P+jCwZC2M37wFJ6Ufsl3ZAlrEvhvbLitltfpJqznyaVIxve97wO4N5afdqJT2Rvxz+0K9d6MMUO5aYO710UHglBcDD/5CLLSo3IjYTt+1Mvc2nwWue7ekuD7no8Chx6RaMJMMPWqun1SzdJ2syk+JWZeeUhdEaTInlbC5trJ5YLNYnD0mLgVLzpR9lJt+gyYVQPvnpoGoH/FkFsZcnAVolvjOhlWLYtFAPJktzxsto6vUJnqEJBBqDp/DDz4qItNsm8rCFcBx58uCVem4GkvnUCgatu2780rvOzQX7btWk3erWXau9CmWjpPRVNZ2DzcgORPdQd/cXTAbPyD3AlZF6YnPlwXJO78C/OIyGB4f3pZ9Pwb7ey1vwryuAJQyYd+txXHnS7/n43+z/l4zJGNAesQVUZrI5BENOhdbUaeV0kUr5fFw95Wm4kC4r/FLSpXN0Gzbd4HKfpoNq/MMQ1F6OEgMyw2LWetuNYEIcNm1KPYdje/4P4djC83n2dVjkn03nzU1sP2wU55P2kSUAiJwuhcBf3qvrNDDeZ+Nfu+c7ind+4D5KqnmzDcDmTFg068BVMSk3WpE2b5r5gb5zi+Lnfb5nwdWXSrPTQlecpVCXoSvVVFazE8bUeG0pzTg80iic2wr8KVVwPeeKzdbcwHDEPuu2X6tpeukL37fxmm/ijtIcgbkeJJxTnM0nMYMsR0N+0n1vNppbpfepUCw11wC71yfwalDjsxWSgHg3PdI9fChawFUbLd27bsD1fNcDUOqk6N7ZCFs70axwG67EXjkOuDBa6VKe+fXgNs+P/P97noxzkryruaos+WxdI1sOI87nwE2/hz4+aXA1S+Q8SXfey7w7WcC3zhHRpp8eTX+rt6J9z94CfDpY4C//5eNf9AMom+4zbSpVOP1AWe+RZwvhx7H/gu+gd3G/HLV0wo+rweD0YB1+y4gIueos4GtN1h/rxlizXvYzTKRyTsKOdJ0Bb3OKqXhPnHtHO5+yWSsuX23VNmMuCBKHaXvAuKi9AbaUpQ6PwpJc+xcqKuJDOCp5/8Uwaufh+dtfBew7iagv4ndrgb9kQDSuQJyt34e/n9eJbOOgj2S5BXqlROC/nOo6s/LzjV/4+qUXXdIMqGZXsBQD/C8/wN+9XrpVTz7XRhJSp+N32t/vaUvHMB4Jo9coejoc2aE9CgQewJY/Wpr71u6DliwQgKPzng94oksgj6PbSuK3+tBd8hEf9uhrTLCZ8VLZDwNABxxBvDon4DzPmDr725KbLskVc63IkpLQT5P3QMcLQsimXwBqVzBUdUdAJaHRnHp4x8F/B6pJH3vfOCyXzYcRH5YGNsjx1OzflLNkjPl8al7KsErAAzDQDyRc1gprSxyOFkEmDXyGdmfjZJ36y0EKVUKO2ouSvsjATy67zDMP7TLnvVy7bBSvTnmmbLyf9fXgNNfVw4osrtgFgl4EfEZWPTkn4Bv/9rajdvwE8CLpwcvucbwVsDja9h3XJfeIyV588k7gbPfiZFUDssXdE1+zcRBEdn3fU+Efv/RQNcisd/7Q4DHL3/2+gGPHw8nY/D6g3h2aBuw+ffABf/twj/SJfZulEddFbLCGZfLrPcz34pdvWsB3F0OLbLK/O4QhsZs2HcBsfD+/T+BkadMJ/6axqVxMAAwkc5jca910T6VaMCHg3YEfDWHO+zIMCpBRw1wfSSMk0qp1y+L7m0YdkRRejjYs1566cykpdbhkGc+Ppy9En8JfAr46UuBN90gtkwLzAvm8RX/1+C/9S6Z97ngZLkprf5v+InKn7Ni9UTfUcB7HjRn8XPKrjsa95NO5ZQXAcsvlOHVp7wII6msoz4boGL9HUvlbFvIZgxta7F6LCkFnPkmGaWz537EEj4MRANQFntsqhloFpxVLAJ/fK/ErD/v05XnT74EuOm/pXrRe6Ttv78uOuTISqU0MiB9XlV9pdrW5kgkpeL4cv5TCBkTwJv+JgtBP79UhrC/4kfA8efb/2ynaBHULCVV0zVfboCm9JUmsgVkC8XptlQLaEEbS2ZxNEyGmswl4rsAGA1vEMt93LXE1sIVYq83jIbnvsEuiynFyRjw2F9kgcZO+4hV9twvi69WzitKAee8F/jtW4Ct1yOWWw2gkqJriWwC6v6f4Cbf57D4iYPynT7/Y/L99kflXBSIVP05Cvgj8ufr/5/MnLz4c/KameDQ47Jw4bX5XVl2roTnGEapp7T0Ofs3Afd8E3joV0AhI9fEs/5V0tcb/L+4+vv3YDydx7NX3iVBdOkxc334h4N9G4HB4+1tT2QAeNe9gFIY2ihjrHRokVUWdAftVUqBiijdeoO4ldzERLCaWVwLOgo5TN8FJOxoy3WH71jMpeQ7c5iDjlK5AgzDsH8Ptmgl8Njfml4zWg2K0sPBng1yUxDsav7aOsSTOWw1luDJi36A4/72WuDnrwBe/0fzqXQjT+Gie96ALs8W7D/zSiy6+MrmB3IhJ5aqP7wL2HW7pSh1W4w8JQEFZ73L/Ht0SvHX1wF/+gAmch9wXGmpni0550SptpcutrHAsfKVwA3/BfzpfTih8HxsCzu7SW3a3/bAj2WR4YVfBboXVp4/6QUiSh/9M7DubY62oSYHHwWgzFXbq1m6VrapdJIf06LU7iJHLgVc82ocWdyHq/o/iY/p3qi33gT8/FXAz14BPP9zMkt2NtDJu1bE+5K1wBM3T7oQagu3k8UgS3bwuYjJcTBAA1GaHQdGdjW8yRS3SxGpbKH+aIJcSvrYHvqV3AwXcyKW333/zN68ZCZkQejEi62/d8WLgZs+Afzlg1g6eCGe4ZmHef6zmr6tzMRBccvc9z0gFUfMtwLX9r8b7/vXd5tfTD3tUqmuPfYXYOXLrf8bzHBomz3rruaos4EHr4FxaCvGUmmckb4XuPojwI5/irg+/bUiRk3+HX2RAHbHU5PDtvSIrNlm34MVB4sdSse6rtzNt2HfBUSUPrrfpjth3gnyfX78+pkRpT1HNpytaZZEJo+u0BxI3wWARaXr5IFNtccCuk2qlPxtMujIrZ5SwwAy+aL9uaeLTpMQ1PH91gJU5zhzzJvYhhiGiNIjz3D0MfpmLXDsucDLfyDi5JevF+HYjF13Ad99NiKJp/Dm3BXYdsJbzd2ceP3AqS+TfqcHfuZo+01R7ie1eCLqXwZc8Alg6/V4697/woKQs5W68mzJuRgAsfcBoPcoy1VyALLq+PzPA8kY3nrwf3HN6GuA37wFePwGc8fRFBpWSsf3iwA++jzg9NdN/t38E+Ri/egM9ZUOPSI34VYv1kvXiY2nFEbiqD+5kJd9++Td+OHCK3FHscqq27tEqqbHPQf40/uB6z8yO/3dBzZXBnGbZelasQXGd5afcprkXP3e+Fzu5W6E7u9qYN8tj2GqtZ+0KGhi4dXV6OGpybLFAvDELcDv3wl8djnwqzfIdWfd24FnfkhuYKtmXM4I+x4UJ4DZkKNqvH5ZvOo5Aift+BF+HPg0FnzzBOB7FwA3fgLYdpOMR5vK8BPyHfrSqcA/PyeVxDf/HZ898ku42XiaNXfPsqdLgFypt9V1igX5/zBocRxMNaVrY+HGT+B67wfwisf/XfbBcz8OvH8zcMkXLInevrBfEut1e86B5mFbh4XEMDD6lPV+0hoMjWcQ9HnQY1N0LegJ4tBEFoWijRA2pYATngfs+Me0ED3HuDQOBpCeUjfTdx0F1i0uJfAerrCjVFwem1RK0y7bd6s/0xZtGnZEUTrTxLbLQW/nQl1FvLof6aTnA5d8Edj2d0k1bXQC2PAjCToI9WLPy/+IW4qnW7N/+cPAqS8VW1N6hnuZdt0uN8hme9yqWfd24OLP4WnZe/Ff8Q9Pm3tnhb5IAB4U0bv+q8D3LwRu+V9Jc50L7N1oPeSomtWvBt73MN4bvgrre0pz1H7+CuDzJwF/vkKsmSYvKH2NRgz95YNAPg284Mu1F0BOugTYeYej/091GdpirfqnWVqqEDx5N4CqJGerotQwgD9/QPpm/+XTeGL+hdMTLoPdwKt/IYEcd30N+OXr3L9pacaBzeatuxpdudh9X/kpfT5xlAxeElstXSkNdAHReXVf0jBcbMHJAFRTUVqpKOfkONv7APC3/wd84RTgJy+W8J5TXgRc/gfgA48AF/0PcO77JDvg/h/b/MeZxGl2wnHPBt58A/5v1Q14Gz4Cdc575Pk7vyItK/93lJyPb/pvYPPvgGtfB3z1abJguupVwL/dB1z6M2DpWgxEA+XeVNN4PMCqV4gAnhiy929oxMiTYhO0Mw5GM3g80LUQvsf+hFF04c7VnwHe+yDw9Pc37YmrRV/Ej9FUDsWuI+Taa6Kv+bCgw9SsJu/WYGgsjQU9Qds2yQXdIRRKY4pssfxCuRbuvM3e++sR2+5KyFG+UEQ6V3Qp6MiHfNFAJu9gkbV7ERBdcPj6JfU9iAn7rs+jXMkZ0S4XR32l5dR2ilJihfKF2pkojSWzCHg9leSvp70BeNb/Ax68BrjxY9PfUMiJyPjje4Fjnwm85SZEj5RqjeUh9atfIzORHvmDo39DU3bdKfYkj82VqLVvxYc8V2BpZpv07I08aetjBgrD+Kn/Khz30OdlQeEfnwa+sQ74+lnArZ8GDj5mb/uckorLza+D3mQAgMeDW9PLccOxHwau2Apc+nPg6KcDD/wE+P4FwFdWAzd/Cjj4eMOPGag3YmjLn6Qn5FkfAgaPq/3mky8BjIL7cfn5jFQO7IjSweVyYSr1ldqulN76v8D9VwNP/wCw7u31Rwx5fWI9v+h/xTb8o+cfvmTeXFpCqKwuAC04RcRXVe/tiMMkZ0BuZvxeZW3BbC4R2y5ViwY3vjpcrGZ6Y7BLbjC1pboOg10BhJFG6IHvAV9fC3znWcC93xEh+IofAR/cCrz468Cxz6qcRwMRsaM+8gdJop0p9qyX5MwGwtwM+9NePB49E3jux4C3/B340C7gtb+RmaZGEbj9S1IJ3vEPCUt738PAC78yqUI4GA1MryabYdWlcl7a9BtH/4aaOEne1SgFXPZLbH/xdXhx9pMYO/6F9vtTIee2ogFM5AqyQLW/8fF32NBVMl01c8CBsYyt5F2NDkiyNasUkGurP+rutS4zLo4VN8bBlGyproyEKZ3bHCXwAvL//XCJLV0pbRZ0lC26UiUFKpVSRwm8oR75/99mYUcUpTPN7vVyQrJzk1zFSCKH/qh/8mrfM/9D+tHu+DJwV1ViYGIY+MlLgPu+C5zzHkn6DPeVKz6WV/yWrJHV3Y0zaOEd3y+2STOjYOpgGAZ+nzkD1570FWDigKyqW135fexvWHLtc7Ha8wRuW/EJCUv490dFPEQGRHB8fS3wjbMlVbaJcHMVnUbopFIKWRkdS+ek6uIrVd5febUI1Bd/U26ub/s88PUz5eavyqpZTX80gGS2MNmCkh4F/nKF3ODoSkctjjhD+mG2/MnRv2Uah7bKTaWd75vHIz2TpSAfWzNv7/u+LGKsfi1wvoxY6A37kckXa1t1lALOfqcsDOhk3gOPWN92qxx6TPaTVVHq8YoAqgo7ipWq5U7su0opmaNs5dx0aKtU2+cCsR3AwNENXzKcyDYOF1u4orEoSBzCsQ9/BXcG34PlG/5bqp+XfAm44nHg1T+XhOt6lvUzLpdqzcO/MvXPsYUOOXLI8ERmci9/sAs4/rliUX3LjcCVu4A3/k3squf/1+R+9RKDXUGkc0UksxZvjhecJNW5B3/h7B9Ri+GSKLUzo7SaI1Zjf7d8b3vDTkP95P2jyZycs4cemRuj4vY9KL2YTapXZhgaT9tO3gUqAUm2w458QXEBPH69aRdSU1wcB6MFpFv2XflMp2FHp8n1MO8wydcMJu27qVzBlX5SAOU+UkeVUkAsvCbmW7cSFKUzzZ71IiLsVv9KxJLZ6b1IOuTn5BcA138YePjXcoB+91ly0/iS7wAXfrL8d/u80ldRs2rTCKWA1ZcBT94lVaiZwMp80jokswXkCgYmFq2VmxYomc+28/bmb85ngL9eCVzzKqieI/CC7Kewvu9i+bd3LwLWvhV441+AD2wB/uWzMvbglqtEuH3jHBGoM2FFraYccrTa0ceMpnIwjBqVrVCP/H++/Pfy73zmhyTd7Wtrgb9/bJp9uzzGo7q6deMnZEHghV9pvIKvlFh4n6jTK2aXoS3yuMDmuJWla0WwJWPlnuLukElR+sh1km68/KJJtmVdaW04pP6ki+X4KuRkMWXbjfa23yxa/Fi17wJicz6wSYJtIBVAr0eh22FQhukZnIYh4v9bTwd+/KKZny3ZjGKhFFDU+AYxnqhxDq9m4alScZ36fYhtB/70AeCLK9C//otYXzwRf1zzQwnMWvNGc7bNxauBhSvFDTETjB+QHkCHbSqALJo2rLoHu4FlZ8tjHfT7LVt4AbEC79voviPm0Fa58bWTBzAFPUfb6bgqvVA9ksyVwrYm5FiebfZtdMW6C4iYdCRKS1XWg2MOBNIJF8nIKLfs0S6Og9Gi1JX03dJnOA87WiVzw4cOwwJtypx9N50ruFcpDbjQUwrIforvkGJAm0BROpPkMyISXVg9HqklSgERnC/9noi5371DbmgLOeBNfwVOe9W0l9sevr7qUhlrs/HnNrbeBLvukIqygwvRpB7AhacAb75BBOVPXiIz2OpxaJsMFr/nm8Dat0O95SYcDC6rLSJ6Fkti7Jv+WhKonxExd8tVEjIyk+zbKKvHNnqHqomb6QHsXgQ8+/8B794gPcV3fAn4yukyA68gFxx9PJaPpyfvBtZ/H1j3DnPH/MmXSPVm201O/jmTGXpE5gAO1LENN0PP39x9H8ZSOfSEfPB6TPQi7bxdgo2WrBEbpbdyga9Oc27IEaeL0OhfJum8WmDPBAc2A76QvZuapWvFRrn3fgB6wcwPj5n91ID+enbwalJx4JeXS8/u0rUADODOrzr6ex0ztlfm4japWsSSTcTWwhUAjEr/+p4NEmb31aeJmFz5ChT/9R68o3AFHvNbrHArJdXSfQ9WHBdu4rSftIrhRBaDDqzgAMrvH7ZzrTv15XKtc7taOrzNWT9pFSN2XBw10O8fSVWHHc2yhTcVF3eOCyFH6VwB4+k8FvTYt+/Od2rfBaSvFHDPwlseB+O8Ujo+A5VSx6L0cIYdpeKAL9w0GDGVdVGUlu27Dl0Ji0r7aa70grsARelMsn+T3Ky4tHrcX28OoD8k9r+FK0TUve3WujcHfWZu/GrRsxg47nzpYS06XN2pxa47JYrea//EODJ19bhvqaScHnG62FDv/e70N228Bvj2M2SV/9KfAxd/BvCH0BcJNBcRPYslYOlNfwOe/RHg8b+KhW2m2PuAKxdqS3bL3iOBl3wLeOstckP1p/cD3z4P2HZTpVKayMkCzHXvlmTgZ3/E3IYcdY7EsG9xMYV3aIvY43w2b2qPOANQXuCpezCSzKLXzE3fgc3ANZfJgsFlv5w247C3uhrRjN4lwOXXyUXy1v+z8Q8wyYFNYnG24+DQ57NSX2k84Xw2MCBhRw0XzJ68G/jWeTKy44JPAq/7g1S1NlwtI0FmC121MFEpbSxKS6Lg/h8BP7oE+O5zJFH33PdK3+SLvgbPwpPQH/Hb671d9QrAG5yZaume9fK9cVjdKpYCZWzNKK1C239jdvpKuxdKMvbDv3LXynrocefW3RLla51j+27VuWm+ubCtGUf3yLkScqTHwdivlIb8XvSEfPbtu4As8i5eLSOa3CC2HYjMc2WOp5uV0op916Eo7Tta2hMOR79kMm7KJu6mfTfspn0XaCsLL0XpTLJnvTy6UinNNbZ+hftEjL7pb3ICrEPDMR7NWH2ZWFB2/MPe++uRGJYKlwPrLlBa7cWUPpvIgCRRnvgv0ut403+L/S8zDvz2bcDv3yH26nfcIb2VJfoifmuBUOveLie2mRISyZgENzkNOUKlsll3kaMWR54h9tJX/gTIJYGfvhQrbnkTjlN75Ab5ti/ITdclXzQ/j9frk/8vj18P5F0KuDloM3lXE4jIKu2T92A0lWt805cakYCin75M5gW/9jc1q9j6M5oucmiigzJr8JHfz8zFxjBElNpJuQbkOJ93IvCUJPDGEllH/aSa/kigtnAvFoB/fhb44cUiot90A3Due6QH+Onvl2r73d+Y/r7Dhcn+rqa21L5lEiJ1/4+lTeLCTwHv3yS9lFXndMu9t5pwP3DKC2V+aS5l/f2N2LNBjieHMxPH0jkUigYGos7mQ+tK6SE79l1AnEGjTwFP3uloO8qkx6StYZ6DcTBVjKSyCPg8CPmd3cLpa+VIKifnvsHjZv8GtxxytNrxR+nqphP7LgAs6AmVBa5tTnietFUlhp19DlDqYXdu3QWqRalzwaVbOBxXSj2eUr/kYRClqbgp91kqV0DY4fdNEw54yp/piO5FQHR+W4UdUZTOJHs2AF2LJNDFAcWigXg9+241JiLPG47xaMaJF0svpdsW3ifvkkeHonS0XlqqPyxi6mlvkACfX79RqqMP/0oSjF//R6kIVtEb9lubUxrqAc7+N2Dr9cDuDY7+HTXR/aQuiNK43bRUpeSm9l33Ahd+CuEDG3B94EM45Z4PyX5d+Qpg+XOtfeZJlwCZUXfi8rMJsX3Z7SfVLD0L2LMB48nU5GMpPSo9ttd/RI6fTx8N/OIycUO89jdSma9BpVJq4Qb57HfKfOCZWOSYGAKSw/b6STVL1wK7ZXzQSDLXfIEjl27ac60XzIrV8wDH9knf6M2fkiCft98GLKla5Ju3XEag3Pe9mU2WbUR8h1jGe5bUfUmuUMRYOt/4HO7xAC/6GvCSb8uYj3PeXbMS0h8N2LOlAmLhzYxK/7NbFIvuhRyV/l1O7bv63GZ7jMdJz5cFArcsvG6FHJUYTebQF/bbHnOiKfe763PTwlPnQKX0QaB3qSu9t7q66SR9V94fdGbfBaSvFIaM8nOKi6J0ohRK1B10ZgUHXKyUAlIpP7B5Zpx51aTMVUrd7SmV/ZR2kr4LyD3Z4RLvhwmK0plk93qxujm8cIyn8ygazuYAauqO8TCDPySjBbb80d0bwF13SH/bkWc4+piGfTZenyRVPuvDMuMunwFe/ycZW1LDwtgb9pdFrmnWvV3sqLf+r42tb0I55Mi5palcKbVb3fIFgXPejeK7NuBnhfNx7N4/S3X0Ihv/7uOeLb3Ej7qQwnuw1Iu34CRnn7N0LZBPYdnERpxbXF8Soc8UEXrNq8QGHuwBnnUl8IY/A+9/RHqY69Brtqe0mnA/cPa7ZL/o//duoXvG7FZKAdlHqTgwvK1xr2RqRKqcXzwF+Mwx0pf8u3+V+clDj06yR/ZHAigaUi0DIBX0b50ri3sv+jrwsu/Vtqud9+9AZkzSxmeD2A6pcjZoPagsBDW58VvxEuC0SxvazwfsVkoBYNnTxWbupoV3eJvsfxfaVHQwkVP7biTgRcjvwfCEzepWIAKc/EIZo+NGVfnQNnl0q6c0mXPcTwoAAZ8H0YC34lBYeKosspRCzGYFN0OOxkqV0h6HldLuoDP7LiCV3+gCOa85IZcCxnbPyUppV8ClSikg/ZK5pJxfZpJUzJQoTWYLiLgwyxWo2Hctp4PXYtEqaVtyy202y7izh8l0kjEg9gRw+mscf1R5OL0LF6HqMR4hO6s+q18jVYnNv5PkRzfYdQew5EwROw6Y1lM6FaVESBz3HKmwNDgR9UUsVkoBSYM8593ATZ8Qa+PSM629vxF7H5CLULjP8UfFE1mE/V57//+r8PUswBf8b0P85Lfgfc85Huiab/1D/GHg+POBR/8CXPx5qRbZxWnyrmbpOgDA51P/BaQAHAjIqJhn/IfMnFtypizQmKQ76INSFkUpIBbeu78B3PK/wGt+ae29jdCVkAVORKnsI+PJuxFPDE5f4Egckm2/97siWI6/QBJTd6+XsI8HS26LUJ981lHrsDx9PIIoIjY2jr5/fh64++tyk/zyHwDzT6y/LYtXSZDIXd8AznqnWKkPJ/EdTa272p3i1JYKAANdAazfZfMGxOMBTn8dcPMnxSJcb46wFVwMOdI9oE5m3gIyYmgwGrRfUQaAVa+U4/Sxv0rYmxMOPS49t/1HO/ucEiOprPX5yXWY5ArSYUdDj5SCxA4z6TERIasudeXjhsYz8HmU4/aChT0hDI1nYBiG/eq0xwOccCHwyB8ljNLufNl4KR3ZhXEwQEVAutNTqueUulDdrA47anT+d4rJSmkqa/OeuQaVnlIXetYXrQSKOZkaoHtMWxhWSmcKHXhzpPPVY1NpqSbRN4+Wx8JojjhdAhHcmlmaHpUeFofWXUBu+gNeT3OLxdK1TU9CfeFAaXSKxblia98GRAbdr5bue9AV6y5gIgXUAgPRAJ4oLHTWK3XyC4CJ/ZUebLsMbZGKu9Mbv94jYTzrw/hq4aW45uRvAFc+Cbzxz8CzPwwcc54lQQoAHo+SyrtVURrqkd7JrdeLmHOLA5uB7sXO7HGDy4FQL3K77kG+aFSOp7F9wN/+H/ClldJnfNyzgbf/E3jtr6Wi+eprgP/YDvzbeuCFX5P/9/EdwE3/jfPuuBybgm/GkqvPEkF65luBt9xk7obkvCtkxXvD1fb/TXYwDCC2s2nIka0+7jqI2yU32eZshdWvkXTZB37qeFsAyPc20O1KFbBi33VBvNtNmtcc8wz5njzkwoLQ8FY5L9kNYJvCSDLneEappre6l1u7J2YrgVf3s7o4DmZeV9BxMvj87iCy+SLGUg4rW8svEvt8KSTOFi6OgwGkUurzKAR9zuWAz+tB0OdBwo0K4LwTJJhtJhN4DUMKSGbtuwF3JJPe1457SoHKd2W2e8FdgqJ0ptizAYBypwfQqd2yCl1ttW3hVUqqv7vvAw4+7nh78OQ9Ml5i2TmOP2o0JWmpTvtsAKmUFoqGdRtKsAs45z0yf/Opex1vBwBJFh19ypXgBwDmegBN0h/x27cSapZfKD15TlN4h7bIhczhTGAASJx9BT6feznGFp3lOLwFKFUj7CwE6UWOW65yvA1lDmx2Zt0FZNV/ydryMX4khoA/vg/48irgnm9Jn+e77gFe+ePpN5hKiVPhjNdJD+W/3Qd8cDt2XvB9fK9wMUb7TwVe9TPg+Z8zvwBw1Drg6POAO79yeAaua5Ixuck0EXIEOK8AArI4WSgaFZuzVXoWy3du48/L450csWeDK7O4gYp91439NNgVsDenVOPxSp/8tr9L5d8Jh7bJMe8Soyl37LuAjFAbLYUEonep9LLvnyVRWg45cnFGqUPrLoDySBnHfaXHPRvw+J2NhtHjYFwUpdGgz5X7JkBGy7hi3/WWRvvNZL9kNiFVRtNBR+5USj0ehZDf43xOKSDHgT/SNmFHFKUzxZ71wPyTXInsjictjPBoQn95jIeDi/XKV4oVyY1q6a7b5SS9xLnVdaQU/uAGlsZ4TGXtWyWu3S0hsW+jPLpVKU2YCM0yieNqBCCW5GOeKf2TVivT1QxtcW7dLTHq0hxATZ+dSikglvBz3yuLHE/e7XxDCjnpvXUqSgFg6Vr4Y4/jS/6v4aKbL5bzwemvBd5zv4wRsmK5ig7Ce/LF+HT+1bjl9K/IDFurnPcBYHyfjK06XJgcB6NbMNw4h+u+VEffuzMuF3eC09CVXFoEjAv9pID8m7pDPgRcqNq4cm467VKgmAc2/db+ZxQL0srjoih181onSfOlc5NScm6YrbCjfQ9Kdbp7oSsfNzSWdhxyBFTSex33lQa7pQXESV9pbLssHJio7plhIlNwZUapJhr0uRN0BMjixL6HnN0XNCIVl8cm+9IwDFdFKSAW3pTToCNAFs8WrmCllDTAMMRu50KPDVARkH0uVLe0GLE1507TvRBYfgHw0LXOk9F23SkBR1NmO9pBLE3uilJbQiIQFSGx/RZ3hISLIUeAVMndsu/2OwnOqubkS+RiO/SIvfenRoDxvc7GwVShk3LdOp56rKY5V3PmWyUg45b/cb4hh7bKyrCT5F3NUWdBwcCFng04dMobgfc+JCOBbNqny3Nv7R5Pxz5b5sze/kV3KoBmMDkOpux2cSOsrmRtdfS9W36hHFP3/9jZxux/WI4nl651w4ms4+RdzWA0gOFExnoLRjULVwALVwIPOUjhHX1Kxha5lLybzhWQyhXcWzCbmp+gRelMCYFGuBhyBAAH3aqUlkWpw0opICm8hx6vVDytEtsu5xuXKpsTmZwrIUeaaNCHibRL599Fq4D0iHyHZoJUKRE+3LhSmskXYRhwbU4pUBKlblRKAdlP+x+ene+sy1CUzgTxnXKwL3FJlCaz8HkUul1YzdK2zbjdnlLN6tdIVeKJm+1/RjYhgsuFflJA0nfdu1A77L09880yP8qNaunejaUePudVd2BmKqWObvwA4MTnA1DAFpspvOXkXXcrpW71bfVFAhizK0oDEZnHueOfwA6Ho3N0BcSNSunR5+HOM7+KczNfRuo5/y22UAdEAl4EfB77C2ZKSd9qfKcEsR0OypXSoxu+TFcA/V4XKoB6YdHuaC9ArHGrL5OKzfh++59TnsXtTqV0eCKDwS7nIgIABruCSOeKSDqtRqx6pViUD2219/5y8q47olSfR3pdOof3hgMYTVblJyw6FciOAyO7XPl802QTItZcalPJFYoYTmQdzygFquy7TmeVAqXRMAAev8He+10cBwNIKJEbIUearqDXHfsuUFmgmKm+UpOVUm2zdbNSGgq4KUpXShvJ4f7OzgAUpTNBOY3QnQt1PJlFXyTgTq9k2AX7LiCDoMMDziy8T90r1iiXROloMuuiiCjZd1M291MgCpz7PmDHP6Qa7IS9D0jPlgvkCkWMp/PuVUqjAWTyRReGQC+UAKpHbfaV6gqr03EwJerOvLVJb9hnbU7pVNa8UWxtt1zlbDX0wCaxy7tRtVEKj/Q8HXH0uFIBVEo5G3cCyCzl+SfL3NyiC8mGzYjtkP8vTfqOYwkX3Qll+67DG+TTXwcYBWdzp/dsALqPcLwgoXFzPzmeVapZ+QoJhnroWnvvd3lGaXn0mYv23Wyh6hyuXRSH28K7f5PkS7hUKT004c6MUkD6JCMBr3P7LiCCcnC5vb7SQg4YedK15F1A0nfdtO92BX3uBB0BssisPDPXL6lnZzcRpakZEKVhv9f5nFJNOam49ftKKUpngt3rAV/YtapNPJFrPt/OJAGfB91Bn3PLpS8gK8iP/rnyxbbKrjvlhHPUOmfbUsLt8Af9mbZZ8yaxyDlJ4h0/ILZUl/pJ3UxyBqqrNi5YeE+6RCwo8Z3W3zu0RYbd9y51vh2YiZ5SSXO2nZjqD0sV8Mk7ge232t+QA5ul192lFNBYwj0XByDHpaMKoMcjvaUHtwCP/9WVbWpIfEfTflJAvnduuhMAh5VSQBKzl50rM0vtLnTs2eCaIwhw376rP9MRPYul5/2ha+3tp0NbZfRRdJ6z7SjRdPSZRfqm5icsOBmAOvxhR7oa5tICrK5qulEp1Z/jiigFpFq66w4gM27tfSNPykKSq5VSd0Wp9JS6JLYCEQkvnKmwI10pbRJ0pHs/w3PVvqvFexv0lVKUzgQ6jbDBMHUrxEqVUrfoi7qQmAqI/auQBTb9xt77d90hq6LBbsebks0XkcgWXFs97nESdKSptl3uvMPeZ7gccqTnJbox8xao3BjFnd4gA5Vwm0f/bP29Q1vkZsqlPpuRlNuVUj+KBjDhZAX5jMuBniOdVUvdSN6tIp7Moj/qjosDkBAfxwtmK14qdtp/fm7me2xizWeUAiLe3RJbkYAPIb/HnV7uMy6XHrVdNs5PyZi816V+0mLRkP3U5ZIoLdmAhydcEBKnXSqCwE5GwKHHxbrr0nekvGDmsiuovAAbiIroOdxjYfZtlJaXbneq7lpAutFTCkjF9cCYCz2lgDjNClnrC4zlHnZ3Ram79l2X0nc1OuxoJjBp39Xi0a05pYAIXNdEqT9cEu8UpWQq+ays+Ll0oQYkdMWN1EaNnnPnmMWnSQiEHQtvLi0VZbesuy5XtkJ+L8J+r7NKKSC2y65F9qulex8AoKSR3QXKoyncrtq4cYM8cCywYIW9vlItSl1iNJWD36sQcWlltFff+Dn53vmCwDOuAHbfC2y70fr7kzGpursoSmMJd89N/U7tu4AsBp77PmDv/c6qys3IJiXB1oQojSeyrrkTAPn+uuJOOPmFQLDHXuBReRa3O9e6sXQOhaJRDnJyimuVUkBcHP6IvcCj4W2uWXeBSgibW9c63fIyaQF2NhJ49z0o9xQuiXcdSuSGfRcA5vcEcdCtSulRZ0mCrtUUXpdnlALu23ddTd8F5N5nfK+MxnObVBzwR+Xa2oAZ6Sl1K31Xs2jVzI7POUxQlLrNgU1AIeOqKI0l3JsrCUjoiiur7IBUS/c+ABywmJq6Z4PsJ9dEqfx7elyqbAF6tqTD/eQPS7V05232Qmr2PiArYMEuZ9tRYsRl+67+HMf7SXPyJcCTd1m7AE0cBJKHpJfQJXSSs1sVQEdpztWsfi3Qd5Qk8VqtAroZclQinnDPMg+IKHVlgWP1ZVJxue3zzj+rHtpm3sS+axgGhl3slQS0zdmF/RSISM/kI3+QBGsr7FkPt2ZxAxXx6FZF2bWeUkDOvye/QAK0chaqZZlxCQR0eUYpUFnockqlUlq1nxatlCp4NuHK39GUXFoWFl0KOQKAA2MZGYnsUuV9QXcQQ25VSr1+4PjnAFtvsNb7HtsuiyNd7ozMMQwDiWzB9fTdZLZgv1VlKrpfcv8MhB2l4qZG66Sy8v/IbfuuK3NKNYtWAmN7gMSwe585C1CUuo0OOXJpbpthGBhxsR8JkIu1a6J01SsBj896tXTXnQAUsOxsVzaj0mfjos25en6bE572BrlBvvV/rQuJvRtdu+kDquYlzsWeUkAqEjCAx/5i/j3lkCP3ROlYyr3xQoBLPcqA9II+4z9kscJqUEZZlLowDqaEm+OFABFboympmDnCFwTOebcsBj15jzsbN5XyEPvGojSVKyCTL7p+DnftO3fG62RkycO/sva+PRukP9mF9gsAGJ4oiVKXREQk4EXI73HHvgvItS49Cmy1UN0adjd5F5BrndfFPu5yqN/USikMEYqHgwObpVfS1XEwaQxGA/C5kHgNSMU1kS24VwVcfhEwcaDSomOG2HZZBHNpsTSTL6JQNFxP3wXgXtjRopXyOBMW3mTMnCidoaAj1+y7QJV4b+1qKUWp2+zZIOE2LgWujGfyyBcNV29o+iJ+d3oAAQlvOOF5wEO/lGQ4s+y6XS58Lg2ALotStyulTkUEAPhDwNM/IH1bO/5p/n1j+8Qe6FLwA1A189alVfaesB8e5UKas2bRSqBvGbDFQgqvvnFyKVgMkNRlN0Vpb60bP7ucdqncmNzyP9ZW2Q9sAiLzgK4FzrehhO4pdYuBiB+G4YJ4B2QxKDwwc9XS8jiYxqI05nIFEHB5YXHxavnePfAT8+/Rs7hdDDnSacJuLXIopTAYDbpj3wWAY54lFaqHfmn+PXqMjJv23dK5yS0Xh+5NnTarFDh8PWrl7ITVrn3k0FgG812y7gLVs0pdWuRYfgEAJdVSs5jsYTeL7v10274LwL2wo3C/uINmQmyl4kDEvCh1vafUTfvuwpJ4b/G+0hkTpUqp5ymlHlNKbVNKXTlTf8+cY/d6se66Fbiig2lc7keayOSRzbs0MmH1ZUBiCNh2k7nXF3IyDsYl6y7gfk+p/izbsyWncsblMjrBSrV07wPy6GalNJFDV9CHoM+dk6vXo9DnluUSkO/NyS+QUTrpMXPvObhFxIeLYkuSnF1cCCrd+Lkitrx+4FlXysXnUQv9tzrkyKVzU7FoIJ7MudtT6qblMhAFznqnVLZmYpU9tgMI9TZNbozPwDm8362eUkCOhzNeLz19ezeae4+exe1im0rFvutOTyngckXZ6xOr8+PXm0+cP7RVUjFdFBIjyZyri68hvwcBn2fyglnfMiDQffj6SvdtFPHh0mI+IOLRreRdoBKY5JqFNzoPWHKmecdLsSALYW6K0rSI0mjA3aAjAJjIuHTvBMxc2JFp+67sJ7cyJgCXg44AIDooQYgUpdNRSnkBfB3AvwA4BcCrlVLulTHmKqkRmUnm5uqx7gF0U2y53Qe4/EKpwGz8qbnX790I5JLAsnPc+ftRPbvNXSHhSmULkGrpeR+Qfkmz4St7H5AbGm1fcQGpbLl3LAFybLpWeQfEwlvIml9Bdjl5F6j0lLqF/izbc2+ncurLpfpy6/+aq5YWC7KfXLTujqfzKBQNdxfMSp/lWhVw7Vvl5vr2L7jzedWYHAczXK4Aunc8DUQDGE+7uLC48uWAN2i+WuryLG6gYt910w4+2BUof64rrHoVUMwBm39r7vXDWyUJukmQihVGUznX+kkBqSj3hf2Te0qVOrxhRy6HHAESdOSqKC1VXV2rlALACRfKdX58f/PXju2V66LLIUcAXLXvaoE74ValFAAWnQbEnjC/UG2WVEwWtJu9LDsz9t1cwUCu4OI87TYIO3LvSJzMWgDbDMPYDgBKqV8AeBEAi2k4c4N7fvU5ualrQldqN1YA+PvYUuy/a6crf/e2oQkA7ldKAeCnd+/CfJdO2k+b/zyc+OgvsOEXV8FQjb+4C+MbcDSAXx1cirRL++mObYegFNAdcu+Q7ov4EUtk8ROXttFTfCZeHFqI9O+vxLYlL236+uN3Xwdv9Bj8ccNBAO4kzz2yd8zVyhYgN5GP7h9zbT8pYwFeFhjA+E1fxY5Hnmj6+tP3bsKOIy7BvS79/YDcILspSnU14q4nhl3rBTv6yDfjvIeuxCNXvwfjkcYVhkBuDKfnU7hjYiG2u7Sf9JxMN8WWblP4/QN78Og+d25ATj/yFVix+YfYkP8ECh737Hwrn3oIQwNn4LYm+/Oh3aMA4GoLhr4efP/2HeUeLqecu+B8LHngWjwwMR9AY3GwZOhWLPSE8IvtERg7d7ry99+9fRjdIR8CPvfWygeiATz41Ihr5yYY3bik63jgH9/E49ubB4qs2HkPRrqOwy0unpu2H0xg+UJ3gu80vWE/Ht4zOmk/rcUyHLP3L7j2zh22xGLPxA4sit1r4pUG1uzfjC1Hvw4PuLifDk1kXRsHA1Tsu3/bvN+1Bf3+1CpcAmDrLz6MWM9JDV9bvr/cH3Xt/nLXcBKAu/dNXaXP+sPGPXh494grn3nk6EI8B8Cma/8LiZA7I4MA4MxkHJtjHmxssj/vfEK+624HHQHA1XfuRNClc95p+aU49eD1GBsdRV9vryufebiZKVF6JICnqn7eDWBd9QuUUm8D8DYAOOqoo2ZoM9xh9ab/Q1CZqwSNGWG8/3YvJuDeCmPA58HS/ohrn3fs/Cg8CvjKzdtc+8zj1Sr8NXAN1j76aVOv31g8Fh/8234AJlYITXLc/Cg8HvdWWo+b34VsoYj//IN7/y8f9L4Qn/F/F4NbrjL1+h/mL8InXPz7AeClZxzp6ucdv6Ab19z7pKv7KeNbhzdn/4oFIxtNvf7rT8zHdVvd3U/HLXDvxk8phePmd+G2rYdw29ZDrnymB0vwx8AyrNhlrrqVNzz4zw0RbF/v3n5SCjhmnnv7aUl/GGG/Fz+750nXPnMQZ+KW4C+w5jH3q6U/fWo+vrez+f7sDvqwqNc9QXz8fNnnn/7bo6595hlqLX4d+CvWbTE3vurmwmp89I+Pufb3A8DTlrmTMaA5YWE3fnv/HlfPTdu85+IT/quxzuQ5/Ftj5+JrT7l7bnreqYtc/bzjF3Thr5v2Y9OeynZe5u3CVf5xfOu6f2AP5lv+zOsCH8Eqzw7Tr//sYwvwjy3u7qeTFvW49ll9ET8W94bw54f24c8P7XPpUw2cFDgCy/f8FtjT/NVpw48P317AIRfvL30ehSP7wq593pL+MPxehR/esdO1zxyAH7cHgzh1xw9d+0zNDx/z47cmjrsF3UHXxCMALB2Qe/pP/dm9MLGLPFF8O1DE6FOb0NfrXnvc4UQZMzBcXCn1cgDPMwzjLaWfXwdgnWEY/1br9WvWrDHWr1/v+na4xfCB3aZfawSiEtntImG/11V7BQCMp3PIuGX9KqGyE0AuZeq1RqgX8LpbsesOudcrqYknsii4/B1RqThQNJdMZ0TmuWppAqRS7qZ4LxYN93pKNYYBlTQp3jw+GC4FZpU/UilXbYQAkM0XMZZ20eYMAIUsVHrU3Gv9YRgBdyssAZ8HPSF37eDJbB5JNwMgACCXhHJ7vIXywAgPmPp+RgM+V1fZAbFxumr9AqAyY0DenD3RCPdL8rqL9Ib98LuUlgpIen0skYXbdzkqFTPlnoJSMMKDrp/DB6MB14KOAKBQNKZZ5n1770Pfz5+PsRf/GNnjn2fp87yHHkX/j56BxHkfRfrUV5t4Q0DuCVzEV8o7cJN0rlC2vLpGPiPfOxMY/jDg8jk85Pe6GnQEiC3Y1XEnAJBNQOWS7n6mxyvncBN0BX2uBh0B0kKXd2t0DlDeR73zjnAtdXomUEptMAyjZu/HTFVK9wCo9pMtgal1oLnJ4MIls70JrtMd8sOdIP9q3LPKzBXctE2X6XJ3lXu28XgU5nXNwP/77vb63gV8nhnYT0Gg1/1v8mwSCfgQcTF4QwgCcHfhYrZx015epst6RWwuo5TC4Eycm7rcsxDOBby1zuHLVgMAekYfB7peZO0D7/oN4PEhuu4NiLbRMRXye10XJnJucq+iOxfoCvpcF7qyn8wJyFbB7UWTdthHMyWl7wOwXCl1jFIqAOBSANfN0N9FCCGEEELcItglQV4HNll7X7EgY3OOv6DtFjkIITPLjIhSwzDyAP4NwPUAtgD4pWEYhynGjRBCCCGEOGLRqdZF6Y5/AOP7ZJ4yIYRYYKbsuzAM4y8A/jJTn08IIYQQQmaIhacCW/4EZJNAwGRWxoO/kPm9J1jrQyWEkLnbCUsIIYQQQmaHhSsAGDLj2AyZcWDLH4EVL5XZ3IQQYgGKUkIIIYQQMpmFp8qjWQvvI9cBuSSw+rKZ2yZCSNtCUUoIIYQQQibTt0xGkBwwGQny4DXAwLHAkjNndrsIIW0JRSkhhBBCCJmMxyMWXjOV0pEngZ23Aae92vW5rISQzoCilBBCCCGETEeLUsNo/LqHrpXHVa+a+W0ihLQlFKWEEEIIIWQ6C1cA6VFgdHf91xiGpO4uezrQv+zwbRshpK2gKCWEEEIIIdNZuFIeG/WV7tkADG/jbFJCiCMoSgkhhBBCyHQWnCyPBx6u/5oHrwF8IeCUFx2ebSKEtCUUpYQQQgghZDqhHknhrVcpzWeAh38NnHSJvJYQQmxCUUoIIYQQQmqzaGV9Ufr49UB6RFJ3CSHEARSlhBBCCCGkNgtXSM9oLjX9dw/+AuhaBBz7rMO+WYSQ9oKilBBCCCGE1GbhqYBRBIa2TH4+MQxsvR5Y9QrA65udbSOEtA0UpYQQQgghpDYLV8jjgU2Tn9/0G6CYp3WXEOIKFKWEEEIIIaQ2/ccA/uj0vtIHfy79plq0EkKIAyhKCSGEEEJIbTweYOEpk0Xp0KPA3gdYJSWEuAZFKSGEEEIIqc/CFcD+hwHDkJ8f+gWgvMDKV8zudhFC2gaKUkIIIYQQUp+Fp8rol7G9QLEAPPRL4PjnAl0LZnvLCCFtAkUpIYQQQgipz8JT5fHAJmDHP4GxPcBpl87uNhFC2gpmeBNCCCGEkPosPEUeD2wCDj4OBHuBEy+e3W0ihLQVFKWEEEIIIaQ+oV6g7yjgqXulUrrqlYA/NNtbRQhpIyhKCSGEEEJIYxaeCjz2F/kzU3cJIS7DnlJCCCGEENIY3VfafzSwdN2sbgohpP2gKCWEEEIIIY1ZuEIeT3s1oNTsbgshpO2gKCWEEEIIIY057tnA6tcCa94021tCCGlD2FNKCCGEEEIaE+oFXvz12d4KQkibwkopIYQQQgghhJBZg6KUEEIIIYQQQsisQVFKCCGEEEIIIWTWoCglhBBCCCGEEDJrUJQSQgghhBBCCJk1KEoJIYQQQgghhMwaFKWEEEIIIYQQQmYNilJCCCGEEEIIIbMGRSkh/7+d+w/1q67jOP5847I/KuluM1nNmguyFljqSBsRlX+ogzKRSOkPLfvDhfQDghb9M4oIF0KEUNQSNMIfaX+kkLFEUZAtxNZ1U+buzNK1tjWVFMLUvfvjfC6efff97q67b/ecz/c+H/Dhe/b5fj7nnHv2up/v/XzPD0mSJEmdcVIqSZIkSeqMk1JJkiRJUmeclEqSJEmSOuOkVJIkSZLUmcjMrveBiDgE/LXr/ZjDcuCfXe+EJoJZ0iQxzxoXs6S+M6Mal8Wapfdk5unD3ujFpLQGEfFoZq7tej9UP7OkSWKeNS5mSX1nRjUuZulYXr4rSZIkSeqMk1JJkiRJUmeclJ64n3W9A5oYZkmTxDxrXMyS+s6MalzM0gDvKZUkSZIkdcYzpZIkSZKkzlQ7KY2IMyPigYh4IiJ2RcTXSv3SiNgaEXvK61Sp/0JETEfE4xHxSER8qLWuSyJid0TMRMTG42zz6rLePRFxdav+qrLe6Yi4LyKWj+g/dDsRcX2py1F99f9TaZZujoiDEbFzoH5TROyLiB2lrD/Z46N69CzLny/r3hURNxyn//ll+zMR8eOIiFL/udL3SET4hMIOVJqn70fEsxHx8kD9NRFxqDU2fvlkjo36oaOM3hcRL0bEvQP1Z0XE9tL/jog4dUR/x7weqjRLkzXeZWaVBVgBnFeW3wY8BawBNgMbS/1G4IayvA6YKsuXAtvL8inAXmA1cCrwZ2DNkO0tBZ4ur1NleQpYAhwElpd2m4FNQ/qP3A5wLrAKeGZ2PRazNCpL5b2PA+cBOwfqNwHf7PqYWropPcryMuBvwOml3S3ARSP2+Y/AhUAAvwMuLfUfAM4GHgTWdn1sF2OpNE8Xlv1+eaD+GuCmro+ppe6MlrYXAZ8G7h2ovxO4siz/FNgwor9jXg9LpVmaqPGu2jOlmbk/Mx8ryy8BTwLvAi6j+cCivH62tHkkM18o9duAlWX5I8BMZj6dmf8Bbi/rGHQxsDUzny/r2QpcQjOoBPCW8m3XacDfh/QfuZ3M/FNmPjOvA6GTVmGWyMyHgOfn/UNrIvUoy6uBPZl5qLT7A3DFYOeIWAGclpnbsvkkvbW1b09m5u55HQiNRW15KvuwLTP3z/NHVmU6yCiZeT/wUruufGZ/CrhrcJsD7Rzzeqq2LJX+EzXeVTspbYuIVTRnG7cDZ7T+g/4BnDGky7U0305BE7hnW+89V+oGDW2Xma8CG4DHaSYQa4BfnGj/kT+UOlFJluZyfbmk5ObZy0y0+HSZZWAGODsiVkXEEpoP1DNH9H/uBLajjlWSp7lcUcbGuyJiPv3VYwuU0VGWAS9m5mtz9HfMq0AlWZpLdeNd9ZPSiHgrcDfw9cz8V/u98i1UDrT/JE14vjWm7b+JZiJxLvBOYBr49jjWrYU1IVn6CfBe4MPAfuDGceyb6tJ1lsu3xxuAO4CHaW5NeH0c69bCm5A83QOsysxzaM7A3jJHe1Wk64xqckxIlqoc76qelJY/4u8GfpWZvynVB8rlEbOXSRxstT8H2AJclpmHS/U+jv7GdSWwLyIuaN0g/JlR7Wj++Ccz95aw3gmsKzdMz/a/7jj91QOVZWmkzDyQma9n5hHg5zSXkWgR6UmWycx7MvOCzPwosBt4KiJOafX/bmm7clh/9UNleRopMw9n5ivln1uA8//XY6F+WuCMjnIYeHs5k9/u75hXkcqyNFK141324MbW+RSae+9uBX40UP9Djr4heXNZfjfNJUDrBtovoXmYwlm8cUPyB4dsbynwF5qHLkyV5aU0Z7T288YDGL4H3Dik/5zbwQcdmaUTyFJrPas49kFHK1rL3wBu7/r4Whau9CXL5b13lNcpYAfwvhH7PPjQj/UD7z+ID/0wTyeYp9a6Bh/80R4bLwe2dX18LfVltNX+Exz7cJpfc/TDab4yoq9jXg9LjVlqtZ+I8a7zHTiJ8HyM5hT6dPmA2gGsp7kW+35gD83DEGY/0LYAL7TaPtpa13qap2ztBb5znG1+qQRwBvhiq/46mhuip2lOmS8b0X/odoCv0lwz/hrNvYRbuj6+i6lUmqXbaCawr5bsXFvqf0lzT+o08Nv2wGSZ/NKzLN8GPFHKlcfpvxbYWbZzExCl/vKS7VeAA8Dvuz6+i61UmqfNJTdHyuumUv8DYBfNH4gPAO/v+vhaqs3ow8Ah4N8lYxeX+tU0E84ZmknFm0f0d8zrYak0SxM13s3+IkiSJEmStOCqvqdUkiRJklQ3J6WSJEmSpM44KZUkSZIkdcZJqSRJkiSpM05KJUmSJEmdcVIqSZIkSeqMk1JJkiRJUmeclEqSJEmSOvNfBHHHQL6mcSgAAAAASUVORK5CYII=", - "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-10-18T15:53:15.961372\n image/svg+xml\n \n \n Matplotlib v3.3.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def simple_outlier_test(ld, rd):\n", - " \"\"\"\n", - " Returns True if the rd and ld time series are similar, False otherwise.\n", - " \"\"\"\n", - " max_percent_diff = rd.sub(ld).abs().max() / rd.abs().max()\n", - " sum_percent_diff = rd.sub(ld).abs().sum() / rd.abs().sum()\n", - " return False if max_percent_diff > 1.1 or sum_percent_diff > 1.1 else True\n", - "\n", - "def plot_outliers(ld, rd, outlier_check):\n", - " \"\"\"\n", - " Provides time series plots of geocodes that are sufficiently different.\n", - " \"\"\"\n", - " local_geo_codes = set(local_data.reset_index()[\"geo_id\"].unique())\n", - " remote_geo_codes = set(remote_data.reset_index()[\"geo_value\"].unique())\n", - " geo_codes = local_geo_codes.intersection(remote_geo_codes)\n", - " for geo_code in geo_codes:\n", - " rd = remote_data.loc[geo_code, :][\"value\"]\n", - " ld = local_data.loc[geo_code, :][\"val\"]\n", - " if outlier_check(ld, rd) == False:\n", - " plt.figure(figsize=(16, 6))\n", - " plt.plot(rd, label=\"remote\")\n", - " plt.plot(ld, label=\"local\")\n", - " plt.title(geo_code)\n", - " plt.legend()\n", - "\n", - "plot_outliers(ld, rd, simple_outlier_test)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6 (default, Oct 18 2022, 12:41:40) \n[Clang 14.0.0 (clang-1400.0.29.202)]" - }, - "orig_nbformat": 2, - "vscode": { - "interpreter": { - "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -}