Skip to content

Commit be8da31

Browse files
nmdefrieskrivard
andauthored
remove "population" wording in relation to chng-fips
Co-authored-by: Katie Mazaitis <[email protected]>
1 parent 1a1bba7 commit be8da31

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

_delphi_utils_python/data_proc/geomap/geo_data_proc.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
FIPS_PUERTO_RICO_POPULATION_URL = "https://www2.census.gov/geo/docs/maps-data/data/rel/zcta_county_rel_10.txt?"
3434
STATE_HHS_FILE = "hhs.txt"
3535
ZIP_POP_MISSING_FILE = "zip_pop_filling.csv"
36-
LOWPOP_COUNTY_GROUPS_FILE = "lowpop_county_groups.csv"
36+
CHNG_COUNTY_GROUPS_FILE = "chng_county_groups.csv"
3737

3838
# Out files
3939
FIPS_STATE_OUT_FILENAME = "fips_state_table.csv"
@@ -489,7 +489,7 @@ def derive_fips_chngfips_crosswalk():
489489
# grouping within the given state via:
490490
#
491491
# county_groups["group"] = (county_groups.groupby("state_fips").cumcount() + 1).astype("string")
492-
county_groups = pd.read_csv(LOWPOP_COUNTY_GROUPS_FILE, dtype="string", index_col=False
492+
county_groups = pd.read_csv(CHNG_COUNTY_GROUPS_FILE, dtype="string", index_col=False
493493
).drop(columns = "fips_list")
494494

495495
# Change to long format.
@@ -511,12 +511,12 @@ def derive_fips_chngfips_crosswalk():
511511
county_groups = county_groups[["fips", "chng-fips"]]
512512
fips_to_state = pd.read_csv(join(OUTPUT_DIR, FIPS_STATE_OUT_FILENAME), dtype="string", index_col=False)
513513

514-
# Get all the fips that aren't included in the low-population groupings.
514+
# Get all the fips that aren't included in the chng groupings.
515515
extra_fips_list = list(set(fips_to_state.fips) - set(county_groups.fips))
516-
# Normal fips codes and CHNG fips codes are the same for high-population counties.
516+
# Normal fips codes and CHNG fips codes are the same for ungrouped counties.
517517
extra_fips_df = pd.DataFrame({"fips" : extra_fips_list, "chng-fips" : extra_fips_list}, dtype="string")
518518

519-
# Combine high-pop and low-pop counties.
519+
# Combine grouped and ungrouped counties.
520520
pd.concat(
521521
[county_groups, extra_fips_df]
522522
).sort_values(

0 commit comments

Comments
 (0)