12
12
# ' @importFrom dplyr %>% filter select group_by summarize across everything group_split ungroup
13
13
# ' @importFrom tidyr drop_na
14
14
# ' @importFrom rlang .data .env
15
- # ' @importFrom stringr str_interp
16
15
# '
17
16
# ' @export
18
17
run_backfill <- function (df , params ,
@@ -28,7 +27,7 @@ run_backfill <- function(df, params,
28
27
}
29
28
30
29
for (geo_level in geo_levels ) {
31
- msg_ts(str_interp( " geo level ${geo_level} " ) )
30
+ msg_ts(" geo level " , geo_level )
32
31
# Get full list of interested locations
33
32
if (geo_level == " state" ) {
34
33
# Drop county field and make new "geo_value" field from "state_id".
@@ -65,7 +64,7 @@ run_backfill <- function(df, params,
65
64
for (subdf in group_dfs ) {
66
65
geo <- subdf $ geo_value [1 ]
67
66
68
- msg_ts(str_interp( " Processing ${ geo} geo group" ) )
67
+ msg_ts(" Processing " , geo , " geo group" )
69
68
70
69
min_refd <- min(subdf [[refd_col ]])
71
70
max_refd <- max(subdf [[refd_col ]])
@@ -78,7 +77,7 @@ run_backfill <- function(df, params,
78
77
# process again. Main use case is for quidel which has overall and
79
78
# age-based signals.
80
79
if (signal_suffix != " " ) {
81
- msg_ts(str_interp( " signal suffix ${signal_suffix} " ) )
80
+ msg_ts(" signal suffix " , signal_suffix )
82
81
num_col <- paste(params $ num_col , signal_suffix , sep = " _" )
83
82
denom_col <- paste(params $ denom_col , signal_suffix , sep = " _" )
84
83
} else {
@@ -87,7 +86,7 @@ run_backfill <- function(df, params,
87
86
}
88
87
89
88
for (value_type in params $ value_types ) {
90
- msg_ts(str_interp( " value type ${value_type} " ) )
89
+ msg_ts(" value type " , value_type )
91
90
# Handle different signal types
92
91
if (value_type == " count" ) { # For counts data only
93
92
combined_df <- fill_missing_updates(subdf , num_col , refd_col , lag_col )
@@ -154,16 +153,15 @@ run_backfill <- function(df, params,
154
153
}
155
154
max_raw = sqrt(max(geo_train_data $ value_raw ))
156
155
for (test_lag in params $ test_lags ) {
157
- msg_ts(str_interp( " test lag ${test_lag} " ) )
156
+ msg_ts(" test lag " , test_lag )
158
157
filtered_data <- data_filteration(test_lag , geo_train_data ,
159
158
geo_test_data , params $ lag_pad )
160
159
train_data <- filtered_data [[1 ]]
161
160
test_data <- filtered_data [[2 ]]
162
161
163
162
if (nrow(train_data ) == 0 || nrow(test_data ) == 0 ) {
164
- msg_ts(str_interp(
165
- " Not enough data to either train or test for test_lag ${test_lag}, skipping"
166
- ))
163
+ msg_ts(" Not enough data to either train or test for test_lag " ,
164
+ test_lag , " , skipping" )
167
165
next
168
166
}
169
167
@@ -288,25 +286,20 @@ main <- function(params,
288
286
params $ training_start_date <- result $ training_start_date
289
287
params $ training_end_date <- result $ training_end_date
290
288
291
- msg_ts(paste0(
292
- str_interp(" training_start_date is ${params$training_start_date}, " ),
293
- str_interp(" training_end_date is ${params$training_end_date}" )
294
- ))
289
+ msg_ts(" training_start_date is " , params $ training_start_date ,
290
+ " , training_end_date is " , params $ training_end_date )
295
291
296
292
# Loop over every indicator + signal combination.
297
293
for (group_i in seq_len(nrow(indicators_subset ))) {
298
294
input_group <- indicators_subset [group_i ,]
299
- msg_ts(str_interp(
300
- " Processing indicator ${input_group$indicator} signal ${input_group$signal}"
301
- ))
295
+ msg_ts(" Processing indicator " , input_group $ indicator , " signal " , input_group $ signal )
302
296
303
297
files_list <- get_files_list(
304
298
input_group $ indicator , input_group $ signal , params , input_group $ sub_dir
305
299
)
306
300
if (length(files_list ) == 0 ) {
307
- warning(str_interp(
308
- " No files found for indicator ${input_group$indicator} signal ${input_group$signal}, skipping"
309
- ))
301
+ warning(" No files found for indicator indicator " , input_group $ indicator ,
302
+ " signal " , input_group $ signal , " , skipping" )
310
303
next
311
304
}
312
305
@@ -327,16 +320,15 @@ main <- function(params,
327
320
bind_rows()
328
321
329
322
if (nrow(input_data ) == 0 ) {
330
- warning(str_interp(
331
- " No data available for indicator ${input_group$indicator} signal ${input_group$signal}, skipping"
332
- ))
323
+ warning(" No data available for indicator " , input_group $ indicator ,
324
+ " signal " , input_group $ signal , " , skipping" )
333
325
next
334
326
}
335
327
336
328
# Check data type and required columns
337
329
msg_ts(" Validating input data" )
338
330
for (value_type in params $ value_types ) {
339
- msg_ts(str_interp( " for ${value_type} " ) )
331
+ msg_ts(" for " , value_type )
340
332
result <- validity_checks(
341
333
input_data , value_type ,
342
334
params $ num_col , params $ denom_col , input_group $ name_suffix ,
0 commit comments