|
15 | 15 | process_window
|
16 | 16 | )
|
17 | 17 | from delphi_safegraph.run import SIGNALS
|
18 |
| - |
| 18 | +from delphi_utils import Nans |
19 | 19 |
|
20 | 20 |
|
21 | 21 | class TestProcess:
|
@@ -150,7 +150,10 @@ def test_process_window(self, tmp_path):
|
150 | 150 | 'geo_id': [1053, 1073],
|
151 | 151 | 'val': [0.04, 0.14],
|
152 | 152 | 'se': [0.02, 0.10],
|
153 |
| - 'sample_size': [2, 2] |
| 153 | + 'sample_size': [2, 2], |
| 154 | + 'missing_val': [0, 0], |
| 155 | + 'missing_se': [0, 0], |
| 156 | + 'missing_sample_size': [0, 0], |
154 | 157 | })
|
155 | 158 | actual = pd.read_csv(
|
156 | 159 | export_dir / '20200214_county_completely_home_prop.csv')
|
@@ -178,49 +181,73 @@ def test_process(self, tmp_path):
|
178 | 181 | 'geo_id': ['al', 'ga'],
|
179 | 182 | 'val': [6, 3.5],
|
180 | 183 | 'se': [None, 0.5],
|
181 |
| - 'sample_size': [1, 2] |
| 184 | + 'sample_size': [1, 2], |
| 185 | + 'missing_val': [Nans.NOT_MISSING]*2, |
| 186 | + 'missing_se': [Nans.PRIVACY, Nans.NOT_MISSING], |
| 187 | + 'missing_sample_size': [Nans.NOT_MISSING]*2, |
182 | 188 | }),
|
183 | 189 | 'completely_home_prop': pd.DataFrame(data={
|
184 | 190 | 'geo_id': ['al', 'ga'],
|
185 | 191 | 'val': [0.15, 0.055],
|
186 | 192 | 'se': [None, 0.005],
|
187 |
| - 'sample_size': [1, 2] |
| 193 | + 'sample_size': [1, 2], |
| 194 | + 'missing_val': [Nans.NOT_MISSING]*2, |
| 195 | + 'missing_se': [Nans.PRIVACY, Nans.NOT_MISSING], |
| 196 | + 'missing_sample_size': [Nans.NOT_MISSING]*2, |
188 | 197 | }),
|
189 | 198 | 'part_time_work_prop': pd.DataFrame(data={
|
190 | 199 | 'geo_id': ['al', 'ga'],
|
191 | 200 | 'val': [0.35, 0.055],
|
192 | 201 | 'se': [None, 0.005],
|
193 |
| - 'sample_size': [1, 2] |
| 202 | + 'sample_size': [1, 2], |
| 203 | + 'missing_val': [Nans.NOT_MISSING]*2, |
| 204 | + 'missing_se': [Nans.PRIVACY, Nans.NOT_MISSING], |
| 205 | + 'missing_sample_size': [Nans.NOT_MISSING]*2, |
194 | 206 | }),
|
195 | 207 | 'full_time_work_prop': pd.DataFrame(data={
|
196 | 208 | 'geo_id': ['al', 'ga'],
|
197 | 209 | 'val': [0.45, 0.055],
|
198 | 210 | 'se': [None, 0.005],
|
199 |
| - 'sample_size': [1, 2] |
| 211 | + 'sample_size': [1, 2], |
| 212 | + 'missing_val': [Nans.NOT_MISSING]*2, |
| 213 | + 'missing_se': [Nans.PRIVACY, Nans.NOT_MISSING], |
| 214 | + 'missing_sample_size': [Nans.NOT_MISSING]*2, |
200 | 215 | }),
|
201 | 216 | 'median_home_dwell_time_7dav': pd.DataFrame(data={
|
202 | 217 | 'geo_id': ['al', 'ga', 'pa'],
|
203 | 218 | 'val': [4.5, 3.5, 7.5],
|
204 | 219 | 'se': [1.5, 0.5, 0.5],
|
205 |
| - 'sample_size': [2, 2, 2] |
| 220 | + 'sample_size': [2, 2, 2], |
| 221 | + 'missing_val': [Nans.NOT_MISSING]*3, |
| 222 | + 'missing_se': [Nans.NOT_MISSING]*3, |
| 223 | + 'missing_sample_size': [Nans.NOT_MISSING]*3, |
206 | 224 | }),
|
207 | 225 | 'wip_completely_home_prop_7dav': pd.DataFrame(data={
|
208 | 226 | 'geo_id': ['al', 'ga', 'pa'],
|
209 | 227 | 'val': [0.1, 0.055, 0.15],
|
210 | 228 | 'se': [0.05, 0.005, 0.05],
|
211 |
| - 'sample_size': [2, 2, 2] |
| 229 | + 'sample_size': [2, 2, 2], |
| 230 | + 'missing_val': [Nans.NOT_MISSING]*3, |
| 231 | + 'missing_se': [Nans.NOT_MISSING]*3, |
| 232 | + 'missing_sample_size': [Nans.NOT_MISSING]*3, |
212 | 233 | }),
|
213 | 234 | 'part_time_work_prop_7dav': pd.DataFrame(data={
|
214 | 235 | 'geo_id': ['al', 'ga', 'pa'],
|
215 | 236 | 'val': [0.25, 0.055, 0.25],
|
216 | 237 | 'se': [0.1, 0.005, 0.05],
|
217 |
| - 'sample_size': [2, 2, 2] |
| 238 | + 'sample_size': [2, 2, 2], |
| 239 | + 'missing_val': [Nans.NOT_MISSING]*3, |
| 240 | + 'missing_se': [Nans.NOT_MISSING]*3, |
| 241 | + 'missing_sample_size': [Nans.NOT_MISSING]*3, |
218 | 242 | }),
|
219 | 243 | 'full_time_work_prop_7dav': pd.DataFrame(data={
|
220 | 244 | 'geo_id': ['al', 'ga', 'pa'],
|
221 | 245 | 'val': [0.35, 0.055, 0.35],
|
222 | 246 | 'se': [0.1, 0.005, 0.05],
|
223 |
| - 'sample_size': [2, 2, 2] |
| 247 | + 'sample_size': [2, 2, 2], |
| 248 | + 'missing_val': [Nans.NOT_MISSING]*3, |
| 249 | + 'missing_se': [Nans.NOT_MISSING]*3, |
| 250 | + 'missing_sample_size': [Nans.NOT_MISSING]*3, |
224 | 251 | })
|
225 | 252 | }
|
226 | 253 | actual = {signal: pd.read_csv(
|
|
0 commit comments