{{ header }}
.. ipython:: python :suppress: from pandas import * # noqa F401, F403
- :ref:`Added <reshaping.melt>`
melt
function topandas.core.reshape
- :ref:`Added <groupby.multiindex>`
level
parameter to group by level in Series and DataFrame descriptive statistics (:issue:`313`) - :ref:`Added <basics.head_tail>`
head
andtail
methods to Series, analogous to to DataFrame (:issue:`296`) - :ref:`Added <indexing.boolean>`
Series.isin
function which checks if each value is contained in a passed sequence (:issue:`289`) - :ref:`Added <io.formatting>`
float_format
option toSeries.to_string
- :ref:`Added <io.parse_dates>`
skip_footer
(:issue:`291`) andconverters
(:issue:`343`) options toread_csv
andread_table
- :ref:`Added <indexing.duplicate>`
drop_duplicates
andduplicated
functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (:issue:`319`) - :ref:`Implemented <dsintro.boolean>` operators '&', '|', '^', '-' on DataFrame (:issue:`347`)
- :ref:`Added <basics.stats>`
Series.mad
, mean absolute deviation - :ref:`Added <timeseries.offsets>`
QuarterEnd
DateOffset (:issue:`321`) - :ref:`Added <dsintro.numpy_interop>`
dot
to DataFrame (:issue:`65`) - Added
orient
option toPanel.from_dict
(:issue:`359`, :issue:`301`) - :ref:`Added <basics.dataframe.from_dict>`
orient
option toDataFrame.from_dict
- :ref:`Added <basics.dataframe.from_records>` passing list of tuples or list of lists to
DataFrame.from_records
(:issue:`357`) - :ref:`Added <groupby.multiindex>` multiple levels to groupby (:issue:`103`)
- :ref:`Allow <basics.sorting>` multiple columns in
by
argument ofDataFrame.sort_index
(:issue:`92`, :issue:`362`) - :ref:`Added <indexing.basics.get_value>` fast
get_value
andput_value
methods to DataFrame (:issue:`360`) - :ref:`Added <computation.covariance>`
cov
instance methods to Series and DataFrame (:issue:`194`, :issue:`362`) - :ref:`Added <visualization.barplot>`
kind='bar'
option toDataFrame.plot
(:issue:`348`) - :ref:`Added <basics.idxmin>`
idxmin
andidxmax
to Series and DataFrame (:issue:`286`) - :ref:`Added <io.clipboard>`
read_clipboard
function to parse DataFrame from clipboard (:issue:`300`) - :ref:`Added <basics.stats>`
nunique
function to Series for counting unique elements (:issue:`297`) - :ref:`Made <basics.dataframe>` DataFrame constructor use Series name if no columns passed (:issue:`373`)
- :ref:`Support <io.parse_dates>` regular expressions in read_table/read_csv (:issue:`364`)
- :ref:`Added <io.html>`
DataFrame.to_html
for writing DataFrame to HTML (:issue:`387`) - :ref:`Added <basics.dataframe>` support for MaskedArray data in DataFrame, masked values converted to NaN (:issue:`396`)
- :ref:`Added <visualization.box>`
DataFrame.boxplot
function (:issue:`368`) - :ref:`Can <basics.apply>` pass extra args, kwds to DataFrame.apply (:issue:`376`)
- :ref:`Implement <merging.multikey_join>`
DataFrame.join
with vectoron
argument (:issue:`312`) - :ref:`Added <visualization.basic>`
legend
boolean flag toDataFrame.plot
(:issue:`324`) - :ref:`Can <reshaping.stacking>` pass multiple levels to
stack
andunstack
(:issue:`370`) - :ref:`Can <reshaping.pivot>` pass multiple values columns to
pivot_table
(:issue:`381`) - :ref:`Use <groupby.multiindex>` Series name in GroupBy for result index (:issue:`363`)
- :ref:`Added <basics.apply>`
raw
option toDataFrame.apply
for performance if only need ndarray (:issue:`309`) - Added proper, tested weighted least squares to standard and panel OLS (:issue:`303`)
- VBENCH Cythonized
cache_readonly
, resulting in substantial micro-performance enhancements throughout the code base (:issue:`361`) - VBENCH Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than np.apply_along_axis (:issue:`309`)
- VBENCH Improved performance of
MultiIndex.from_tuples
- VBENCH Special Cython matrix iterator for applying arbitrary reduction operations
- VBENCH + DOCUMENT Add
raw
option toDataFrame.apply
for getting better performance when - VBENCH Faster cythonized count by level in Series and DataFrame (:issue:`341`)
- VBENCH? Significant GroupBy performance enhancement with multiple keys with many "empty" combinations
- VBENCH New Cython vectorized function
map_infer
speeds upSeries.apply
andSeries.map
significantly when passed elementwise Python function, motivated by (:issue:`355`) - VBENCH Significantly improved performance of
Series.order
, which also makes np.unique called on a Series faster (:issue:`327`) - VBENCH Vastly improved performance of GroupBy on axes with a MultiIndex (:issue:`299`)
.. contributors:: v0.5.0..v0.6.0