forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_moments_expanding.py
447 lines (371 loc) · 17.3 KB
/
test_moments_expanding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import warnings
import numpy as np
from numpy.random import randn
import pytest
from pandas import DataFrame, Index, MultiIndex, Series, isna, notna
import pandas._testing as tm
from pandas.tests.window.common import ConsistencyBase
class TestExpandingMomentsConsistency(ConsistencyBase):
def setup_method(self, method):
self._create_data()
def test_expanding_apply_args_kwargs(self, engine_and_raw):
def mean_w_arg(x, const):
return np.mean(x) + const
engine, raw = engine_and_raw
df = DataFrame(np.random.rand(20, 3))
expected = df.expanding().apply(np.mean, engine=engine, raw=raw) + 20.0
result = df.expanding().apply(mean_w_arg, engine=engine, raw=raw, args=(20,))
tm.assert_frame_equal(result, expected)
result = df.expanding().apply(mean_w_arg, raw=raw, kwargs={"const": 20})
tm.assert_frame_equal(result, expected)
def test_expanding_corr(self):
A = self.series.dropna()
B = (A + randn(len(A)))[:-5]
result = A.expanding().corr(B)
rolling_result = A.rolling(window=len(A), min_periods=1).corr(B)
tm.assert_almost_equal(rolling_result, result)
def test_expanding_count(self):
result = self.series.expanding(min_periods=0).count()
tm.assert_almost_equal(
result, self.series.rolling(window=len(self.series), min_periods=0).count()
)
def test_expanding_quantile(self):
result = self.series.expanding().quantile(0.5)
rolling_result = self.series.rolling(
window=len(self.series), min_periods=1
).quantile(0.5)
tm.assert_almost_equal(result, rolling_result)
def test_expanding_cov(self):
A = self.series
B = (A + randn(len(A)))[:-5]
result = A.expanding().cov(B)
rolling_result = A.rolling(window=len(A), min_periods=1).cov(B)
tm.assert_almost_equal(rolling_result, result)
def test_expanding_cov_pairwise(self):
result = self.frame.expanding().corr()
rolling_result = self.frame.rolling(
window=len(self.frame), min_periods=1
).corr()
tm.assert_frame_equal(result, rolling_result)
def test_expanding_corr_pairwise(self):
result = self.frame.expanding().corr()
rolling_result = self.frame.rolling(
window=len(self.frame), min_periods=1
).corr()
tm.assert_frame_equal(result, rolling_result)
def test_expanding_cov_diff_index(self):
# GH 7512
s1 = Series([1, 2, 3], index=[0, 1, 2])
s2 = Series([1, 3], index=[0, 2])
result = s1.expanding().cov(s2)
expected = Series([None, None, 2.0])
tm.assert_series_equal(result, expected)
s2a = Series([1, None, 3], index=[0, 1, 2])
result = s1.expanding().cov(s2a)
tm.assert_series_equal(result, expected)
s1 = Series([7, 8, 10], index=[0, 1, 3])
s2 = Series([7, 9, 10], index=[0, 2, 3])
result = s1.expanding().cov(s2)
expected = Series([None, None, None, 4.5])
tm.assert_series_equal(result, expected)
def test_expanding_corr_diff_index(self):
# GH 7512
s1 = Series([1, 2, 3], index=[0, 1, 2])
s2 = Series([1, 3], index=[0, 2])
result = s1.expanding().corr(s2)
expected = Series([None, None, 1.0])
tm.assert_series_equal(result, expected)
s2a = Series([1, None, 3], index=[0, 1, 2])
result = s1.expanding().corr(s2a)
tm.assert_series_equal(result, expected)
s1 = Series([7, 8, 10], index=[0, 1, 3])
s2 = Series([7, 9, 10], index=[0, 2, 3])
result = s1.expanding().corr(s2)
expected = Series([None, None, None, 1.0])
tm.assert_series_equal(result, expected)
def test_expanding_cov_pairwise_diff_length(self):
# GH 7512
df1 = DataFrame([[1, 5], [3, 2], [3, 9]], columns=Index(["A", "B"], name="foo"))
df1a = DataFrame(
[[1, 5], [3, 9]], index=[0, 2], columns=Index(["A", "B"], name="foo")
)
df2 = DataFrame(
[[5, 6], [None, None], [2, 1]], columns=Index(["X", "Y"], name="foo")
)
df2a = DataFrame(
[[5, 6], [2, 1]], index=[0, 2], columns=Index(["X", "Y"], name="foo")
)
# TODO: xref gh-15826
# .loc is not preserving the names
result1 = df1.expanding().cov(df2, pairwise=True).loc[2]
result2 = df1.expanding().cov(df2a, pairwise=True).loc[2]
result3 = df1a.expanding().cov(df2, pairwise=True).loc[2]
result4 = df1a.expanding().cov(df2a, pairwise=True).loc[2]
expected = DataFrame(
[[-3.0, -6.0], [-5.0, -10.0]],
columns=Index(["A", "B"], name="foo"),
index=Index(["X", "Y"], name="foo"),
)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected)
tm.assert_frame_equal(result4, expected)
def test_expanding_corr_pairwise_diff_length(self):
# GH 7512
df1 = DataFrame(
[[1, 2], [3, 2], [3, 4]],
columns=["A", "B"],
index=Index(range(3), name="bar"),
)
df1a = DataFrame(
[[1, 2], [3, 4]], index=Index([0, 2], name="bar"), columns=["A", "B"]
)
df2 = DataFrame(
[[5, 6], [None, None], [2, 1]],
columns=["X", "Y"],
index=Index(range(3), name="bar"),
)
df2a = DataFrame(
[[5, 6], [2, 1]], index=Index([0, 2], name="bar"), columns=["X", "Y"]
)
result1 = df1.expanding().corr(df2, pairwise=True).loc[2]
result2 = df1.expanding().corr(df2a, pairwise=True).loc[2]
result3 = df1a.expanding().corr(df2, pairwise=True).loc[2]
result4 = df1a.expanding().corr(df2a, pairwise=True).loc[2]
expected = DataFrame(
[[-1.0, -1.0], [-1.0, -1.0]], columns=["A", "B"], index=Index(["X", "Y"])
)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, expected)
tm.assert_frame_equal(result3, expected)
tm.assert_frame_equal(result4, expected)
@pytest.mark.parametrize("has_min_periods", [True, False])
@pytest.mark.parametrize(
"func,static_comp",
[("sum", np.sum), ("mean", np.mean), ("max", np.max), ("min", np.min)],
ids=["sum", "mean", "max", "min"],
)
def test_expanding_func(self, func, static_comp, has_min_periods):
def expanding_func(x, min_periods=1, center=False, axis=0):
exp = x.expanding(min_periods=min_periods, center=center, axis=axis)
return getattr(exp, func)()
self._check_expanding(expanding_func, static_comp, preserve_nan=False)
self._check_expanding_has_min_periods(
expanding_func, static_comp, has_min_periods
)
@pytest.mark.parametrize("has_min_periods", [True, False])
def test_expanding_apply(self, engine_and_raw, has_min_periods):
engine, raw = engine_and_raw
def expanding_mean(x, min_periods=1):
exp = x.expanding(min_periods=min_periods)
result = exp.apply(lambda x: x.mean(), raw=raw, engine=engine)
return result
# TODO(jreback), needed to add preserve_nan=False
# here to make this pass
self._check_expanding(expanding_mean, np.mean, preserve_nan=False)
self._check_expanding_has_min_periods(expanding_mean, np.mean, has_min_periods)
def test_expanding_apply_empty_series(self, engine_and_raw):
engine, raw = engine_and_raw
ser = Series([], dtype=np.float64)
tm.assert_series_equal(
ser, ser.expanding().apply(lambda x: x.mean(), raw=raw, engine=engine)
)
def test_expanding_apply_min_periods_0(self, engine_and_raw):
# GH 8080
engine, raw = engine_and_raw
s = Series([None, None, None])
result = s.expanding(min_periods=0).apply(
lambda x: len(x), raw=raw, engine=engine
)
expected = Series([1.0, 2.0, 3.0])
tm.assert_series_equal(result, expected)
def _check_expanding(self, func, static_comp, preserve_nan=True):
series_result = func(self.series)
assert isinstance(series_result, Series)
frame_result = func(self.frame)
assert isinstance(frame_result, DataFrame)
result = func(self.series)
tm.assert_almost_equal(result[10], static_comp(self.series[:11]))
if preserve_nan:
assert result.iloc[self._nan_locs].isna().all()
def _check_expanding_has_min_periods(self, func, static_comp, has_min_periods):
ser = Series(randn(50))
if has_min_periods:
result = func(ser, min_periods=30)
assert result[:29].isna().all()
tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50]))
# min_periods is working correctly
result = func(ser, min_periods=15)
assert isna(result.iloc[13])
assert notna(result.iloc[14])
ser2 = Series(randn(20))
result = func(ser2, min_periods=5)
assert isna(result[3])
assert notna(result[4])
# min_periods=0
result0 = func(ser, min_periods=0)
result1 = func(ser, min_periods=1)
tm.assert_almost_equal(result0, result1)
else:
result = func(ser)
tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50]))
@pytest.mark.parametrize(
"f",
[
lambda x: x.expanding().count(),
lambda x: x.expanding(min_periods=5).cov(x, pairwise=False),
lambda x: x.expanding(min_periods=5).corr(x, pairwise=False),
lambda x: x.expanding(min_periods=5).max(),
lambda x: x.expanding(min_periods=5).min(),
lambda x: x.expanding(min_periods=5).sum(),
lambda x: x.expanding(min_periods=5).mean(),
lambda x: x.expanding(min_periods=5).std(),
lambda x: x.expanding(min_periods=5).var(),
lambda x: x.expanding(min_periods=5).skew(),
lambda x: x.expanding(min_periods=5).kurt(),
lambda x: x.expanding(min_periods=5).quantile(0.5),
lambda x: x.expanding(min_periods=5).median(),
lambda x: x.expanding(min_periods=5).apply(sum, raw=False),
lambda x: x.expanding(min_periods=5).apply(sum, raw=True),
],
)
def test_moment_functions_zero_length(self, f):
# GH 8056
s = Series(dtype=np.float64)
s_expected = s
df1 = DataFrame()
df1_expected = df1
df2 = DataFrame(columns=["a"])
df2["a"] = df2["a"].astype("float64")
df2_expected = df2
s_result = f(s)
tm.assert_series_equal(s_result, s_expected)
df1_result = f(df1)
tm.assert_frame_equal(df1_result, df1_expected)
df2_result = f(df2)
tm.assert_frame_equal(df2_result, df2_expected)
@pytest.mark.parametrize(
"f",
[
lambda x: (x.expanding(min_periods=5).cov(x, pairwise=True)),
lambda x: (x.expanding(min_periods=5).corr(x, pairwise=True)),
],
)
def test_moment_functions_zero_length_pairwise(self, f):
df1 = DataFrame()
df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar"))
df2["a"] = df2["a"].astype("float64")
df1_expected = DataFrame(
index=MultiIndex.from_product([df1.index, df1.columns]), columns=Index([])
)
df2_expected = DataFrame(
index=MultiIndex.from_product(
[df2.index, df2.columns], names=["bar", "foo"]
),
columns=Index(["a"], name="foo"),
dtype="float64",
)
df1_result = f(df1)
tm.assert_frame_equal(df1_result, df1_expected)
df2_result = f(df2)
tm.assert_frame_equal(df2_result, df2_expected)
@pytest.mark.slow
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
def test_expanding_consistency(self, min_periods):
# suppress warnings about empty slices, as we are deliberately testing
# with empty/0-length Series/DataFrames
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message=".*(empty slice|0 for slice).*",
category=RuntimeWarning,
)
# test consistency between different expanding_* moments
self._test_moments_consistency_mock_mean(
mean=lambda x: x.expanding(min_periods=min_periods).mean(),
mock_mean=lambda x: x.expanding(min_periods=min_periods).sum()
/ x.expanding().count(),
)
self._test_moments_consistency_is_constant(
min_periods=min_periods,
count=lambda x: x.expanding().count(),
mean=lambda x: x.expanding(min_periods=min_periods).mean(),
corr=lambda x, y: x.expanding(min_periods=min_periods).corr(y),
)
self._test_moments_consistency_var_debiasing_factors(
var_unbiased=lambda x: x.expanding(min_periods=min_periods).var(),
var_biased=lambda x: x.expanding(min_periods=min_periods).var(ddof=0),
var_debiasing_factors=lambda x: (
x.expanding().count()
/ (x.expanding().count() - 1.0).replace(0.0, np.nan)
),
)
# test consistency between expanding_xyz() and either (a)
# expanding_apply of Series.xyz(), or (b) expanding_apply of
# np.nanxyz()
for (x, is_constant, no_nans) in self.data:
functions = self.base_functions
# GH 8269
if no_nans:
functions = self.base_functions + self.no_nan_functions
for (f, require_min_periods, name) in functions:
expanding_f = getattr(x.expanding(min_periods=min_periods), name)
if (
require_min_periods
and (min_periods is not None)
and (min_periods < require_min_periods)
):
continue
if name == "count":
expanding_f_result = expanding_f()
expanding_apply_f_result = x.expanding(min_periods=0).apply(
func=f, raw=True
)
else:
if name in ["cov", "corr"]:
expanding_f_result = expanding_f(pairwise=False)
else:
expanding_f_result = expanding_f()
expanding_apply_f_result = x.expanding(
min_periods=min_periods
).apply(func=f, raw=True)
# GH 9422
if name in ["sum", "prod"]:
tm.assert_equal(expanding_f_result, expanding_apply_f_result)
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
def test_moments_consistency_var(self, min_periods):
self._test_moments_consistency_var_data(
min_periods=min_periods,
count=lambda x: x.expanding(min_periods=min_periods).count(),
mean=lambda x: x.expanding(min_periods=min_periods).mean(),
var_unbiased=lambda x: x.expanding(min_periods=min_periods).var(),
var_biased=lambda x: x.expanding(min_periods=min_periods).var(ddof=0),
)
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
def test_expanding_consistency_std(self, min_periods):
self._test_moments_consistency_std_data(
var_unbiased=lambda x: x.expanding(min_periods=min_periods).var(),
std_unbiased=lambda x: x.expanding(min_periods=min_periods).std(),
var_biased=lambda x: x.expanding(min_periods=min_periods).var(ddof=0),
std_biased=lambda x: x.expanding(min_periods=min_periods).std(ddof=0),
)
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
def test_expanding_consistency_cov(self, min_periods):
self._test_moments_consistency_cov_data(
var_unbiased=lambda x: x.expanding(min_periods=min_periods).var(),
cov_unbiased=lambda x, y: x.expanding(min_periods=min_periods).cov(y),
var_biased=lambda x: x.expanding(min_periods=min_periods).var(ddof=0),
cov_biased=lambda x, y: x.expanding(min_periods=min_periods).cov(y, ddof=0),
)
@pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4])
def test_expanding_consistency_series(self, min_periods):
self._test_moments_consistency_series_data(
mean=lambda x: x.expanding(min_periods=min_periods).mean(),
corr=lambda x, y: x.expanding(min_periods=min_periods).corr(y),
var_unbiased=lambda x: x.expanding(min_periods=min_periods).var(),
std_unbiased=lambda x: x.expanding(min_periods=min_periods).std(),
cov_unbiased=lambda x, y: x.expanding(min_periods=min_periods).cov(y),
var_biased=lambda x: x.expanding(min_periods=min_periods).var(ddof=0),
std_biased=lambda x: x.expanding(min_periods=min_periods).std(ddof=0),
cov_biased=lambda x, y: x.expanding(min_periods=min_periods).cov(y, ddof=0),
)