forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sort_index.py
168 lines (126 loc) · 5.92 KB
/
test_sort_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import random
import numpy as np
import pytest
from pandas import IntervalIndex, MultiIndex, Series
import pandas.util.testing as tm
class TestSeriesSortIndex:
def test_sort_index(self, datetime_series):
rindex = list(datetime_series.index)
random.shuffle(rindex)
random_order = datetime_series.reindex(rindex)
sorted_series = random_order.sort_index()
tm.assert_series_equal(sorted_series, datetime_series)
# descending
sorted_series = random_order.sort_index(ascending=False)
tm.assert_series_equal(
sorted_series, datetime_series.reindex(datetime_series.index[::-1])
)
# compat on level
sorted_series = random_order.sort_index(level=0)
tm.assert_series_equal(sorted_series, datetime_series)
# compat on axis
sorted_series = random_order.sort_index(axis=0)
tm.assert_series_equal(sorted_series, datetime_series)
msg = "No axis named 1 for object type <class 'pandas.core.series.Series'>"
with pytest.raises(ValueError, match=msg):
random_order.sort_values(axis=1)
sorted_series = random_order.sort_index(level=0, axis=0)
tm.assert_series_equal(sorted_series, datetime_series)
with pytest.raises(ValueError, match=msg):
random_order.sort_index(level=0, axis=1)
def test_sort_index_inplace(self, datetime_series):
# For GH#11402
rindex = list(datetime_series.index)
random.shuffle(rindex)
# descending
random_order = datetime_series.reindex(rindex)
result = random_order.sort_index(ascending=False, inplace=True)
assert result is None
tm.assert_series_equal(
random_order, datetime_series.reindex(datetime_series.index[::-1])
)
# ascending
random_order = datetime_series.reindex(rindex)
result = random_order.sort_index(ascending=True, inplace=True)
assert result is None
tm.assert_series_equal(random_order, datetime_series)
def test_sort_index_level(self):
mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC"))
s = Series([1, 2], mi)
backwards = s.iloc[[1, 0]]
res = s.sort_index(level="A")
tm.assert_series_equal(backwards, res)
res = s.sort_index(level=["A", "B"])
tm.assert_series_equal(backwards, res)
res = s.sort_index(level="A", sort_remaining=False)
tm.assert_series_equal(s, res)
res = s.sort_index(level=["A", "B"], sort_remaining=False)
tm.assert_series_equal(s, res)
@pytest.mark.parametrize("level", ["A", 0]) # GH#21052
def test_sort_index_multiindex(self, level):
mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC"))
s = Series([1, 2], mi)
backwards = s.iloc[[1, 0]]
# implicit sort_remaining=True
res = s.sort_index(level=level)
tm.assert_series_equal(backwards, res)
# GH#13496
# sort has no effect without remaining lvls
res = s.sort_index(level=level, sort_remaining=False)
tm.assert_series_equal(s, res)
def test_sort_index_kind(self):
# GH#14444 & GH#13589: Add support for sort algo choosing
series = Series(index=[3, 2, 1, 4, 3], dtype=object)
expected_series = Series(index=[1, 2, 3, 3, 4], dtype=object)
index_sorted_series = series.sort_index(kind="mergesort")
tm.assert_series_equal(expected_series, index_sorted_series)
index_sorted_series = series.sort_index(kind="quicksort")
tm.assert_series_equal(expected_series, index_sorted_series)
index_sorted_series = series.sort_index(kind="heapsort")
tm.assert_series_equal(expected_series, index_sorted_series)
def test_sort_index_na_position(self):
series = Series(index=[3, 2, 1, 4, 3, np.nan], dtype=object)
expected_series_first = Series(index=[np.nan, 1, 2, 3, 3, 4], dtype=object)
index_sorted_series = series.sort_index(na_position="first")
tm.assert_series_equal(expected_series_first, index_sorted_series)
expected_series_last = Series(index=[1, 2, 3, 3, 4, np.nan], dtype=object)
index_sorted_series = series.sort_index(na_position="last")
tm.assert_series_equal(expected_series_last, index_sorted_series)
def test_sort_index_intervals(self):
s = Series(
[np.nan, 1, 2, 3], IntervalIndex.from_arrays([0, 1, 2, 3], [1, 2, 3, 4])
)
result = s.sort_index()
expected = s
tm.assert_series_equal(result, expected)
result = s.sort_index(ascending=False)
expected = Series(
[3, 2, 1, np.nan], IntervalIndex.from_arrays([3, 2, 1, 0], [4, 3, 2, 1])
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"original_list, sorted_list, ascending, ignore_index, output_index",
[
([2, 3, 6, 1], [2, 3, 6, 1], True, True, [0, 1, 2, 3]),
([2, 3, 6, 1], [2, 3, 6, 1], True, False, [0, 1, 2, 3]),
([2, 3, 6, 1], [1, 6, 3, 2], False, True, [0, 1, 2, 3]),
([2, 3, 6, 1], [1, 6, 3, 2], False, False, [3, 2, 1, 0]),
],
)
def test_sort_index_ignore_index(
self, original_list, sorted_list, ascending, ignore_index, output_index
):
# GH 30114
ser = Series(original_list)
expected = Series(sorted_list, index=output_index)
# Test when inplace is False
sorted_sr = ser.sort_index(ascending=ascending, ignore_index=ignore_index)
tm.assert_series_equal(sorted_sr, expected)
tm.assert_series_equal(ser, Series(original_list))
# Test when inplace is True
copied_sr = ser.copy()
copied_sr.sort_index(
ascending=ascending, ignore_index=ignore_index, inplace=True
)
tm.assert_series_equal(copied_sr, expected)
tm.assert_series_equal(ser, Series(original_list))