forked from sparkfun/SparkFun_BME280_Arduino_Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSparkFunBME280.cpp
710 lines (601 loc) · 22.9 KB
/
SparkFunBME280.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
/******************************************************************************
SparkFunBME280.cpp
BME280 Arduino and Teensy Driver
Marshall Taylor @ SparkFun Electronics
May 20, 2015
https://github.com/sparkfun/BME280_Breakout
Resources:
Uses Wire.h for i2c operation
Uses SPI.h for SPI operation
Development environment specifics:
Arduino IDE 1.8.5
Teensy loader 1.23
This code is released under the [MIT License](http://opensource.org/licenses/MIT).
Please review the LICENSE.md file included with this example. If you have any questions
or concerns with licensing, please contact [email protected].
Distributed as-is; no warranty is given.
******************************************************************************/
//See SparkFunBME280.h for additional topology notes.
#include "SparkFunBME280.h"
//****************************************************************************//
//
// Settings and configuration
//
//****************************************************************************//
//Constructor -- Specifies default configuration
BME280::BME280( void )
{
//Construct with these default settings
settings.commInterface = I2C_MODE; //Default to I2C
settings.I2CAddress = 0x77; //Default, jumper open is 0x77
_hardPort = &Wire; //Default to Wire port
settings.chipSelectPin = 10; //Select CS pin for SPI
//These are deprecated settings
settings.runMode = 3; //Normal/Run
settings.tStandby = 0; //0.5ms
settings.filter = 0; //Filter off
settings.tempOverSample = 1;
settings.pressOverSample = 1;
settings.humidOverSample = 1;
settings.tempCorrection = 0.0; // correction of temperature - added to the result
}
//****************************************************************************//
//
// Configuration section
//
// This uses the stored BME280_SensorSettings to start the IMU
// Use statements such as "mySensor.settings.commInterface = SPI_MODE;" to
// configure before calling .begin();
//
//****************************************************************************//
uint8_t BME280::begin()
{
delay(2); //Make sure sensor had enough time to turn on. BME280 requires 2ms to start up.
//Check the settings structure values to determine how to setup the device
switch (settings.commInterface)
{
case I2C_MODE:
switch(_wireType)
{
case(HARD_WIRE):
_hardPort->begin(); //The caller can begin their port and set the speed. We just confirm it here otherwise it can be hard to debug.
break;
case(SOFT_WIRE):
#ifdef SoftwareWire_h
_softPort->begin(); //The caller can begin their port and set the speed. We just confirm it here otherwise it can be hard to debug.
#endif
break;
}
break;
case SPI_MODE:
// start the SPI library:
SPI.begin();
#ifdef ARDUINO_ARCH_ESP32
SPI.setFrequency(1000000);
// Data is read and written MSb first.
SPI.setBitOrder(SPI_MSBFIRST);
// Like the standard arduino/teensy comment below, mode0 seems wrong according to standards
// but conforms to the timing diagrams when used for the ESP32
SPI.setDataMode(SPI_MODE0);
#else
// Maximum SPI frequency is 10MHz, could divide by 2 here:
SPI.setClockDivider(SPI_CLOCK_DIV32);
// Data is read and written MSb first.
SPI.setBitOrder(MSBFIRST);
// Data is captured on rising edge of clock (CPHA = 0)
// Base value of the clock is HIGH (CPOL = 1)
// This was SPI_MODE3 for RedBoard, but I had to change to
// MODE0 for Teensy 3.1 operation
SPI.setDataMode(SPI_MODE3);
#endif
// initialize the data ready and chip select pins:
pinMode(settings.chipSelectPin, OUTPUT);
digitalWrite(settings.chipSelectPin, HIGH);
break;
default:
break;
}
//Check communication with IC before anything else
uint8_t chipID = readRegister(BME280_CHIP_ID_REG); //Should return 0x60 or 0x58
if(chipID != 0x58 && chipID != 0x60) // Is this BMP or BME?
return(chipID); //This is not BMP nor BME!
//Reading all compensation data, range 0x88:A1, 0xE1:E7
calibration.dig_T1 = ((uint16_t)((readRegister(BME280_DIG_T1_MSB_REG) << 8) + readRegister(BME280_DIG_T1_LSB_REG)));
calibration.dig_T2 = ((int16_t)((readRegister(BME280_DIG_T2_MSB_REG) << 8) + readRegister(BME280_DIG_T2_LSB_REG)));
calibration.dig_T3 = ((int16_t)((readRegister(BME280_DIG_T3_MSB_REG) << 8) + readRegister(BME280_DIG_T3_LSB_REG)));
calibration.dig_P1 = ((uint16_t)((readRegister(BME280_DIG_P1_MSB_REG) << 8) + readRegister(BME280_DIG_P1_LSB_REG)));
calibration.dig_P2 = ((int16_t)((readRegister(BME280_DIG_P2_MSB_REG) << 8) + readRegister(BME280_DIG_P2_LSB_REG)));
calibration.dig_P3 = ((int16_t)((readRegister(BME280_DIG_P3_MSB_REG) << 8) + readRegister(BME280_DIG_P3_LSB_REG)));
calibration.dig_P4 = ((int16_t)((readRegister(BME280_DIG_P4_MSB_REG) << 8) + readRegister(BME280_DIG_P4_LSB_REG)));
calibration.dig_P5 = ((int16_t)((readRegister(BME280_DIG_P5_MSB_REG) << 8) + readRegister(BME280_DIG_P5_LSB_REG)));
calibration.dig_P6 = ((int16_t)((readRegister(BME280_DIG_P6_MSB_REG) << 8) + readRegister(BME280_DIG_P6_LSB_REG)));
calibration.dig_P7 = ((int16_t)((readRegister(BME280_DIG_P7_MSB_REG) << 8) + readRegister(BME280_DIG_P7_LSB_REG)));
calibration.dig_P8 = ((int16_t)((readRegister(BME280_DIG_P8_MSB_REG) << 8) + readRegister(BME280_DIG_P8_LSB_REG)));
calibration.dig_P9 = ((int16_t)((readRegister(BME280_DIG_P9_MSB_REG) << 8) + readRegister(BME280_DIG_P9_LSB_REG)));
calibration.dig_H1 = ((uint8_t)(readRegister(BME280_DIG_H1_REG)));
calibration.dig_H2 = ((int16_t)((readRegister(BME280_DIG_H2_MSB_REG) << 8) + readRegister(BME280_DIG_H2_LSB_REG)));
calibration.dig_H3 = ((uint8_t)(readRegister(BME280_DIG_H3_REG)));
calibration.dig_H4 = ((int16_t)((readRegister(BME280_DIG_H4_MSB_REG) << 4) + (readRegister(BME280_DIG_H4_LSB_REG) & 0x0F)));
calibration.dig_H5 = ((int16_t)((readRegister(BME280_DIG_H5_MSB_REG) << 4) + ((readRegister(BME280_DIG_H4_LSB_REG) >> 4) & 0x0F)));
calibration.dig_H6 = ((int8_t)readRegister(BME280_DIG_H6_REG));
//Most of the time the sensor will be init with default values
//But in case user has old/deprecated code, use the settings.x values
setStandbyTime(settings.tStandby);
setFilter(settings.filter);
setPressureOverSample(settings.pressOverSample); //Default of 1x oversample
setHumidityOverSample(settings.humidOverSample); //Default of 1x oversample
setTempOverSample(settings.tempOverSample); //Default of 1x oversample
setMode(MODE_NORMAL); //Go!
return(readRegister(BME280_CHIP_ID_REG)); //Should return 0x60
}
//Begin comm with BME280 over SPI
bool BME280::beginSPI(uint8_t csPin)
{
settings.chipSelectPin = csPin;
settings.commInterface = SPI_MODE;
if(begin() == 0x58) return(true); //Begin normal init with these settings. Should return chip ID of 0x58 for BMP
if(begin() == 0x60) return(true); //Begin normal init with these settings. Should return chip ID of 0x60 for BME
return(false);
}
//Begin comm with BME280 over I2C
bool BME280::beginI2C(TwoWire &wirePort)
{
_hardPort = &wirePort;
_wireType = HARD_WIRE;
settings.commInterface = I2C_MODE;
//settings.I2CAddress = 0x77; //We assume user has set the I2C address using setI2CAddress()
if(begin() == 0x58) return(true); //Begin normal init with these settings. Should return chip ID of 0x58 for BMP
if(begin() == 0x60) return(true); //Begin normal init with these settings. Should return chip ID of 0x60 for BME
return(false);
}
//Begin comm with BME280 over software I2C
#ifdef SoftwareWire_h
bool BME280::beginI2C(SoftwareWire& wirePort)
{
_softPort = &wirePort;
_wireType = SOFT_WIRE;
settings.commInterface = I2C_MODE;
//settings.I2CAddress = 0x77; //We assume user has set the I2C address using setI2CAddress()
if(begin() == 0x58) return(true); //Begin normal init with these settings. Should return chip ID of 0x58 for BMP
if(begin() == 0x60) return(true); //Begin normal init with these settings. Should return chip ID of 0x60 for BME
return(false);
}
#endif
//Set the mode bits in the ctrl_meas register
// Mode 00 = Sleep
// 01 and 10 = Forced
// 11 = Normal mode
void BME280::setMode(uint8_t mode)
{
if(mode > 0b11) mode = 0; //Error check. Default to sleep mode
uint8_t controlData = readRegister(BME280_CTRL_MEAS_REG);
controlData &= ~( (1<<1) | (1<<0) ); //Clear the mode[1:0] bits
controlData |= mode; //Set
writeRegister(BME280_CTRL_MEAS_REG, controlData);
}
//Gets the current mode bits in the ctrl_meas register
//Mode 00 = Sleep
// 01 and 10 = Forced
// 11 = Normal mode
uint8_t BME280::getMode()
{
uint8_t controlData = readRegister(BME280_CTRL_MEAS_REG);
return(controlData & 0b00000011); //Clear bits 7 through 2
}
//Set the standby bits in the config register
//tStandby can be:
// 0, 0.5ms
// 1, 62.5ms
// 2, 125ms
// 3, 250ms
// 4, 500ms
// 5, 1000ms
// 6, 10ms
// 7, 20ms
void BME280::setStandbyTime(uint8_t timeSetting)
{
if(timeSetting > 0b111) timeSetting = 0; //Error check. Default to 0.5ms
uint8_t controlData = readRegister(BME280_CONFIG_REG);
controlData &= ~( (1<<7) | (1<<6) | (1<<5) ); //Clear the 7/6/5 bits
controlData |= (timeSetting << 5); //Align with bits 7/6/5
writeRegister(BME280_CONFIG_REG, controlData);
}
//Set the filter bits in the config register
//filter can be off or number of FIR coefficients to use:
// 0, filter off
// 1, coefficients = 2
// 2, coefficients = 4
// 3, coefficients = 8
// 4, coefficients = 16
void BME280::setFilter(uint8_t filterSetting)
{
if(filterSetting > 0b111) filterSetting = 0; //Error check. Default to filter off
uint8_t controlData = readRegister(BME280_CONFIG_REG);
controlData &= ~( (1<<4) | (1<<3) | (1<<2) ); //Clear the 4/3/2 bits
controlData |= (filterSetting << 2); //Align with bits 4/3/2
writeRegister(BME280_CONFIG_REG, controlData);
}
//Set the temperature oversample value
//0 turns off temp sensing
//1 to 16 are valid over sampling values
void BME280::setTempOverSample(uint8_t overSampleAmount)
{
overSampleAmount = checkSampleValue(overSampleAmount); //Error check
uint8_t originalMode = getMode(); //Get the current mode so we can go back to it at the end
setMode(MODE_SLEEP); //Config will only be writeable in sleep mode, so first go to sleep mode
//Set the osrs_t bits (7, 6, 5) to overSampleAmount
uint8_t controlData = readRegister(BME280_CTRL_MEAS_REG);
controlData &= ~( (1<<7) | (1<<6) | (1<<5) ); //Clear bits 765
controlData |= overSampleAmount << 5; //Align overSampleAmount to bits 7/6/5
writeRegister(BME280_CTRL_MEAS_REG, controlData);
setMode(originalMode); //Return to the original user's choice
}
//Set the pressure oversample value
//0 turns off pressure sensing
//1 to 16 are valid over sampling values
void BME280::setPressureOverSample(uint8_t overSampleAmount)
{
overSampleAmount = checkSampleValue(overSampleAmount); //Error check
uint8_t originalMode = getMode(); //Get the current mode so we can go back to it at the end
setMode(MODE_SLEEP); //Config will only be writeable in sleep mode, so first go to sleep mode
//Set the osrs_p bits (4, 3, 2) to overSampleAmount
uint8_t controlData = readRegister(BME280_CTRL_MEAS_REG);
controlData &= ~( (1<<4) | (1<<3) | (1<<2) ); //Clear bits 432
controlData |= overSampleAmount << 2; //Align overSampleAmount to bits 4/3/2
writeRegister(BME280_CTRL_MEAS_REG, controlData);
setMode(originalMode); //Return to the original user's choice
}
//Set the humidity oversample value
//0 turns off humidity sensing
//1 to 16 are valid over sampling values
void BME280::setHumidityOverSample(uint8_t overSampleAmount)
{
overSampleAmount = checkSampleValue(overSampleAmount); //Error check
uint8_t originalMode = getMode(); //Get the current mode so we can go back to it at the end
setMode(MODE_SLEEP); //Config will only be writeable in sleep mode, so first go to sleep mode
//Set the osrs_h bits (2, 1, 0) to overSampleAmount
uint8_t controlData = readRegister(BME280_CTRL_HUMIDITY_REG);
controlData &= ~( (1<<2) | (1<<1) | (1<<0) ); //Clear bits 2/1/0
controlData |= overSampleAmount << 0; //Align overSampleAmount to bits 2/1/0
writeRegister(BME280_CTRL_HUMIDITY_REG, controlData);
setMode(originalMode); //Return to the original user's choice
}
//Validates an over sample value
//Allowed values are 0 to 16
//These are used in the humidty, pressure, and temp oversample functions
uint8_t BME280::checkSampleValue(uint8_t userValue)
{
switch(userValue)
{
case(0):
return 0;
break; //Valid
case(1):
return 1;
break; //Valid
case(2):
return 2;
break; //Valid
case(4):
return 3;
break; //Valid
case(8):
return 4;
break; //Valid
case(16):
return 5;
break; //Valid
default:
return 1; //Default to 1x
break; //Good
}
}
//Set the global setting for the I2C address we want to communicate with
//Default is 0x77
void BME280::setI2CAddress(uint8_t address)
{
settings.I2CAddress = address; //Set the I2C address for this device
}
//Check the measuring bit and return true while device is taking measurement
bool BME280::isMeasuring(void)
{
uint8_t stat = readRegister(BME280_STAT_REG);
return(stat & (1<<3)); //If the measuring bit (3) is set, return true
}
//Strictly resets. Run .begin() afterwards
void BME280::reset( void )
{
writeRegister(BME280_RST_REG, 0xB6);
}
//****************************************************************************//
//
// Pressure Section
//
//****************************************************************************//
float BME280::readFloatPressure( void )
{
// Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 integer bits and 8 fractional bits).
// Output value of “24674867” represents 24674867/256 = 96386.2 Pa = 963.862 hPa
uint8_t buffer[3];
readRegisterRegion(buffer, BME280_PRESSURE_MSB_REG, 3);
int32_t adc_P = ((uint32_t)buffer[0] << 12) | ((uint32_t)buffer[1] << 4) | ((buffer[2] >> 4) & 0x0F);
int64_t var1, var2, p_acc;
var1 = ((int64_t)t_fine) - 128000;
var2 = var1 * var1 * (int64_t)calibration.dig_P6;
var2 = var2 + ((var1 * (int64_t)calibration.dig_P5)<<17);
var2 = var2 + (((int64_t)calibration.dig_P4)<<35);
var1 = ((var1 * var1 * (int64_t)calibration.dig_P3)>>8) + ((var1 * (int64_t)calibration.dig_P2)<<12);
var1 = (((((int64_t)1)<<47)+var1))*((int64_t)calibration.dig_P1)>>33;
if (var1 == 0)
{
return 0; // avoid exception caused by division by zero
}
p_acc = 1048576 - adc_P;
p_acc = (((p_acc<<31) - var2)*3125)/var1;
var1 = (((int64_t)calibration.dig_P9) * (p_acc>>13) * (p_acc>>13)) >> 25;
var2 = (((int64_t)calibration.dig_P8) * p_acc) >> 19;
p_acc = ((p_acc + var1 + var2) >> 8) + (((int64_t)calibration.dig_P7)<<4);
return (float)p_acc / 256.0;
}
//Sets the internal variable _referencePressure so the
void BME280::setReferencePressure(float refPressure)
{
_referencePressure = refPressure;
}
//Return the local reference pressure
float BME280::getReferencePressure()
{
return(_referencePressure);
}
float BME280::readFloatAltitudeMeters( void )
{
float heightOutput = 0;
//heightOutput = ((float)-45846.2)*(pow(((float)readFloatPressure()/(float)_referencePressure), 0.190263) - (float)1);
heightOutput = ((float)-44330.77)*(pow(((float)readFloatPressure()/(float)_referencePressure), 0.190263) - (float)1); //Corrected, see issue 30
return heightOutput;
}
float BME280::readFloatAltitudeFeet( void )
{
float heightOutput = 0;
heightOutput = readFloatAltitudeMeters() * 3.28084;
return heightOutput;
}
//****************************************************************************//
//
// Humidity Section
//
//****************************************************************************//
float BME280::readFloatHumidity( void )
{
// Returns humidity in %RH as unsigned 32 bit integer in Q22. 10 format (22 integer and 10 fractional bits).
// Output value of “47445” represents 47445/1024 = 46. 333 %RH
uint8_t buffer[2];
readRegisterRegion(buffer, BME280_HUMIDITY_MSB_REG, 2);
int32_t adc_H = ((uint32_t)buffer[0] << 8) | ((uint32_t)buffer[1]);
int32_t var1;
var1 = (t_fine - ((int32_t)76800));
var1 = (((((adc_H << 14) - (((int32_t)calibration.dig_H4) << 20) - (((int32_t)calibration.dig_H5) * var1)) +
((int32_t)16384)) >> 15) * (((((((var1 * ((int32_t)calibration.dig_H6)) >> 10) * (((var1 * ((int32_t)calibration.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) *
((int32_t)calibration.dig_H2) + 8192) >> 14));
var1 = (var1 - (((((var1 >> 15) * (var1 >> 15)) >> 7) * ((int32_t)calibration.dig_H1)) >> 4));
var1 = (var1 < 0 ? 0 : var1);
var1 = (var1 > 419430400 ? 419430400 : var1);
return (float)(var1>>12) / 1024.0;
}
//****************************************************************************//
//
// Temperature Section
//
//****************************************************************************//
float BME280::readTempC( void )
{
// Returns temperature in DegC, resolution is 0.01 DegC. Output value of “5123” equals 51.23 DegC.
// t_fine carries fine temperature as global value
//get the reading (adc_T);
uint8_t buffer[3];
readRegisterRegion(buffer, BME280_TEMPERATURE_MSB_REG, 3);
int32_t adc_T = ((uint32_t)buffer[0] << 12) | ((uint32_t)buffer[1] << 4) | ((buffer[2] >> 4) & 0x0F);
//By datasheet, calibrate
int64_t var1, var2;
var1 = ((((adc_T>>3) - ((int32_t)calibration.dig_T1<<1))) * ((int32_t)calibration.dig_T2)) >> 11;
var2 = (((((adc_T>>4) - ((int32_t)calibration.dig_T1)) * ((adc_T>>4) - ((int32_t)calibration.dig_T1))) >> 12) *
((int32_t)calibration.dig_T3)) >> 14;
t_fine = var1 + var2;
float output = (t_fine * 5 + 128) >> 8;
output = output / 100 + settings.tempCorrection;
return output;
}
float BME280::readTempF( void )
{
float output = readTempC();
output = (output * 9) / 5 + 32;
return output;
}
//****************************************************************************//
//
// Dew point Section
//
//****************************************************************************//
// Returns Dew point in DegC
double BME280::dewPointC(void)
{
double celsius = readTempC();
double humidity = readFloatHumidity();
// (1) Saturation Vapor Pressure = ESGG(T)
double RATIO = 373.15 / (273.15 + celsius);
double RHS = -7.90298 * (RATIO - 1);
RHS += 5.02808 * log10(RATIO);
RHS += -1.3816e-7 * (pow(10, (11.344 * (1 - 1/RATIO ))) - 1) ;
RHS += 8.1328e-3 * (pow(10, (-3.49149 * (RATIO - 1))) - 1) ;
RHS += log10(1013.246);
// factor -3 is to adjust units - Vapor Pressure SVP * humidity
double VP = pow(10, RHS - 3) * humidity;
// (2) DEWPOINT = F(Vapor Pressure)
double T = log(VP/0.61078); // temp var
return (241.88 * T) / (17.558 - T);
}
// Returns Dew point in DegF
double BME280::dewPointF(void)
{
return(dewPointC() * 1.8 + 32); //Convert C to F
}
//****************************************************************************//
//
// Utility
//
//****************************************************************************//
void BME280::readRegisterRegion(uint8_t *outputPointer , uint8_t offset, uint8_t length)
{
//define pointer that will point to the external space
uint8_t i = 0;
char c = 0;
switch (settings.commInterface)
{
case I2C_MODE:
switch(_wireType)
{
case(HARD_WIRE):
_hardPort->beginTransmission(settings.I2CAddress);
_hardPort->write(offset);
_hardPort->endTransmission();
// request bytes from slave device
_hardPort->requestFrom(settings.I2CAddress, length);
while ( (_hardPort->available()) && (i < length)) // slave may send less than requested
{
c = _hardPort->read(); // receive a byte as character
*outputPointer = c;
outputPointer++;
i++;
}
break;
case(SOFT_WIRE):
#ifdef SoftwareWire_h
_softPort->beginTransmission(settings.I2CAddress);
_softPort->write(offset);
_softPort->endTransmission();
// request bytes from slave device
_softPort->requestFrom(settings.I2CAddress, length);
while ( (_softPort->available()) && (i < length)) // slave may send less than requested
{
c = _softPort->read(); // receive a byte as character
*outputPointer = c;
outputPointer++;
i++;
}
#endif
break;
}
break;
case SPI_MODE:
// take the chip select low to select the device:
digitalWrite(settings.chipSelectPin, LOW);
// send the device the register you want to read:
SPI.transfer(offset | 0x80); //Ored with "read request" bit
while ( i < length ) // slave may send less than requested
{
c = SPI.transfer(0x00); // receive a byte as character
*outputPointer = c;
outputPointer++;
i++;
}
// take the chip select high to de-select:
digitalWrite(settings.chipSelectPin, HIGH);
break;
default:
break;
}
}
uint8_t BME280::readRegister(uint8_t offset)
{
//Return value
uint8_t result = 0;
uint8_t numBytes = 1;
switch (settings.commInterface) {
case I2C_MODE:
switch(_wireType)
{
case(HARD_WIRE):
_hardPort->beginTransmission(settings.I2CAddress);
_hardPort->write(offset);
_hardPort->endTransmission();
_hardPort->requestFrom(settings.I2CAddress, numBytes);
while ( _hardPort->available() ) // slave may send less than requested
{
result = _hardPort->read(); // receive a byte as a proper uint8_t
}
break;
case(SOFT_WIRE):
#ifdef SoftwareWire_h
_softPort->beginTransmission(settings.I2CAddress);
_softPort->write(offset);
_softPort->endTransmission();
_softPort->requestFrom(settings.I2CAddress, numBytes);
while ( _softPort->available() ) // slave may send less than requested
{
result = _softPort->read(); // receive a byte as a proper uint8_t
}
#endif
break;
}
break;
case SPI_MODE:
// take the chip select low to select the device:
digitalWrite(settings.chipSelectPin, LOW);
// send the device the register you want to read:
SPI.transfer(offset | 0x80); //Ored with "read request" bit
// send a value of 0 to read the first byte returned:
result = SPI.transfer(0x00);
// take the chip select high to de-select:
digitalWrite(settings.chipSelectPin, HIGH);
break;
default:
break;
}
return result;
}
int16_t BME280::readRegisterInt16( uint8_t offset )
{
uint8_t myBuffer[2];
readRegisterRegion(myBuffer, offset, 2); //Does memory transfer
int16_t output = (int16_t)myBuffer[0] | int16_t(myBuffer[1] << 8);
return output;
}
void BME280::writeRegister(uint8_t offset, uint8_t dataToWrite)
{
switch (settings.commInterface)
{
case I2C_MODE:
//Write the byte
switch(_wireType)
{
case(HARD_WIRE):
_hardPort->beginTransmission(settings.I2CAddress);
_hardPort->write(offset);
_hardPort->write(dataToWrite);
_hardPort->endTransmission();
break;
case(SOFT_WIRE):
#ifdef SoftwareWire_h
_softPort->beginTransmission(settings.I2CAddress);
_softPort->write(offset);
_softPort->write(dataToWrite);
_softPort->endTransmission();
#endif
break;
}
break;
case SPI_MODE:
// take the chip select low to select the device:
digitalWrite(settings.chipSelectPin, LOW);
// send the device the register you want to read:
SPI.transfer(offset & 0x7F);
// send a value of 0 to read the first byte returned:
SPI.transfer(dataToWrite);
// decrement the number of bytes left to read:
// take the chip select high to de-select:
digitalWrite(settings.chipSelectPin, HIGH);
break;
default:
break;
}
}