forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboxplot.py
502 lines (435 loc) · 15.4 KB
/
boxplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
from __future__ import annotations
from typing import (
TYPE_CHECKING,
NamedTuple,
)
import warnings
from matplotlib.artist import setp
import numpy as np
from pandas.core.dtypes.common import is_dict_like
from pandas.core.dtypes.missing import remove_na_arraylike
import pandas as pd
import pandas.core.common as com
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.core import (
LinePlot,
MPLPlot,
)
from pandas.plotting._matplotlib.groupby import create_iter_data_given_by
from pandas.plotting._matplotlib.style import get_standard_colors
from pandas.plotting._matplotlib.tools import (
create_subplots,
flatten_axes,
maybe_adjust_figure,
)
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.lines import Line2D
class BoxPlot(LinePlot):
_kind = "box"
_layout_type = "horizontal"
_valid_return_types = (None, "axes", "dict", "both")
class BP(NamedTuple):
# namedtuple to hold results
ax: Axes
lines: dict[str, list[Line2D]]
def __init__(self, data, return_type="axes", **kwargs):
# Do not call LinePlot.__init__ which may fill nan
if return_type not in self._valid_return_types:
raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}")
self.return_type = return_type
MPLPlot.__init__(self, data, **kwargs)
def _args_adjust(self):
if self.subplots:
# Disable label ax sharing. Otherwise, all subplots shows last
# column label
if self.orientation == "vertical":
self.sharex = False
else:
self.sharey = False
@classmethod
def _plot(cls, ax, y, column_num=None, return_type="axes", **kwds):
if y.ndim == 2:
y = [remove_na_arraylike(v) for v in y]
# Boxplot fails with empty arrays, so need to add a NaN
# if any cols are empty
# GH 8181
y = [v if v.size > 0 else np.array([np.nan]) for v in y]
else:
y = remove_na_arraylike(y)
bp = ax.boxplot(y, **kwds)
if return_type == "dict":
return bp, bp
elif return_type == "both":
return cls.BP(ax=ax, lines=bp), bp
else:
return ax, bp
def _validate_color_args(self):
if "color" in self.kwds:
if self.colormap is not None:
warnings.warn(
"'color' and 'colormap' cannot be used "
"simultaneously. Using 'color'"
)
self.color = self.kwds.pop("color")
if isinstance(self.color, dict):
valid_keys = ["boxes", "whiskers", "medians", "caps"]
for key in self.color:
if key not in valid_keys:
raise ValueError(
f"color dict contains invalid key '{key}'. "
f"The key must be either {valid_keys}"
)
else:
self.color = None
# get standard colors for default
colors = get_standard_colors(num_colors=3, colormap=self.colormap, color=None)
# use 2 colors by default, for box/whisker and median
# flier colors isn't needed here
# because it can be specified by ``sym`` kw
self._boxes_c = colors[0]
self._whiskers_c = colors[0]
self._medians_c = colors[2]
self._caps_c = colors[0]
def _get_colors(self, num_colors=None, color_kwds="color"):
pass
def maybe_color_bp(self, bp):
if isinstance(self.color, dict):
boxes = self.color.get("boxes", self._boxes_c)
whiskers = self.color.get("whiskers", self._whiskers_c)
medians = self.color.get("medians", self._medians_c)
caps = self.color.get("caps", self._caps_c)
else:
# Other types are forwarded to matplotlib
# If None, use default colors
boxes = self.color or self._boxes_c
whiskers = self.color or self._whiskers_c
medians = self.color or self._medians_c
caps = self.color or self._caps_c
# GH 30346, when users specifying those arguments explicitly, our defaults
# for these four kwargs should be overridden; if not, use Pandas settings
if not self.kwds.get("boxprops"):
setp(bp["boxes"], color=boxes, alpha=1)
if not self.kwds.get("whiskerprops"):
setp(bp["whiskers"], color=whiskers, alpha=1)
if not self.kwds.get("medianprops"):
setp(bp["medians"], color=medians, alpha=1)
if not self.kwds.get("capprops"):
setp(bp["caps"], color=caps, alpha=1)
def _make_plot(self):
if self.subplots:
self._return_obj = pd.Series(dtype=object)
# Re-create iterated data if `by` is assigned by users
data = (
create_iter_data_given_by(self.data, self._kind)
if self.by is not None
else self.data
)
for i, (label, y) in enumerate(self._iter_data(data=data)):
ax = self._get_ax(i)
kwds = self.kwds.copy()
# When by is applied, show title for subplots to know which group it is
# just like df.boxplot, and need to apply T on y to provide right input
if self.by is not None:
y = y.T
ax.set_title(pprint_thing(label))
# When `by` is assigned, the ticklabels will become unique grouped
# values, instead of label which is used as subtitle in this case.
ticklabels = [
pprint_thing(col) for col in self.data.columns.levels[0]
]
else:
ticklabels = [pprint_thing(label)]
ret, bp = self._plot(
ax, y, column_num=i, return_type=self.return_type, **kwds
)
self.maybe_color_bp(bp)
self._return_obj[label] = ret
self._set_ticklabels(ax, ticklabels)
else:
y = self.data.values.T
ax = self._get_ax(0)
kwds = self.kwds.copy()
ret, bp = self._plot(
ax, y, column_num=0, return_type=self.return_type, **kwds
)
self.maybe_color_bp(bp)
self._return_obj = ret
labels = [left for left, _ in self._iter_data()]
labels = [pprint_thing(left) for left in labels]
if not self.use_index:
labels = [pprint_thing(key) for key in range(len(labels))]
self._set_ticklabels(ax, labels)
def _set_ticklabels(self, ax: Axes, labels):
if self.orientation == "vertical":
ax.set_xticklabels(labels)
else:
ax.set_yticklabels(labels)
def _make_legend(self):
pass
def _post_plot_logic(self, ax, data):
pass
@property
def orientation(self):
if self.kwds.get("vert", True):
return "vertical"
else:
return "horizontal"
@property
def result(self):
if self.return_type is None:
return super().result
else:
return self._return_obj
def _grouped_plot_by_column(
plotf,
data,
columns=None,
by=None,
numeric_only=True,
grid=False,
figsize=None,
ax=None,
layout=None,
return_type=None,
**kwargs,
):
grouped = data.groupby(by)
if columns is None:
if not isinstance(by, (list, tuple)):
by = [by]
columns = data._get_numeric_data().columns.difference(by)
naxes = len(columns)
fig, axes = create_subplots(
naxes=naxes, sharex=True, sharey=True, figsize=figsize, ax=ax, layout=layout
)
_axes = flatten_axes(axes)
ax_values = []
for i, col in enumerate(columns):
ax = _axes[i]
gp_col = grouped[col]
keys, values = zip(*gp_col)
re_plotf = plotf(keys, values, ax, **kwargs)
ax.set_title(col)
ax.set_xlabel(pprint_thing(by))
ax_values.append(re_plotf)
ax.grid(grid)
result = pd.Series(ax_values, index=columns)
# Return axes in multiplot case, maybe revisit later # 985
if return_type is None:
result = axes
byline = by[0] if len(by) == 1 else by
fig.suptitle(f"Boxplot grouped by {byline}")
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
return result
def boxplot(
data,
column=None,
by=None,
ax=None,
fontsize=None,
rot=0,
grid=True,
figsize=None,
layout=None,
return_type=None,
**kwds,
):
import matplotlib.pyplot as plt
# validate return_type:
if return_type not in BoxPlot._valid_return_types:
raise ValueError("return_type must be {'axes', 'dict', 'both'}")
if isinstance(data, pd.Series):
data = data.to_frame("x")
column = "x"
def _get_colors():
# num_colors=3 is required as method maybe_color_bp takes the colors
# in positions 0 and 2.
# if colors not provided, use same defaults as DataFrame.plot.box
result = get_standard_colors(num_colors=3)
result = np.take(result, [0, 0, 2])
result = np.append(result, "k")
colors = kwds.pop("color", None)
if colors:
if is_dict_like(colors):
# replace colors in result array with user-specified colors
# taken from the colors dict parameter
# "boxes" value placed in position 0, "whiskers" in 1, etc.
valid_keys = ["boxes", "whiskers", "medians", "caps"]
key_to_index = dict(zip(valid_keys, range(4)))
for key, value in colors.items():
if key in valid_keys:
result[key_to_index[key]] = value
else:
raise ValueError(
f"color dict contains invalid key '{key}'. "
f"The key must be either {valid_keys}"
)
else:
result.fill(colors)
return result
def maybe_color_bp(bp, **kwds):
# GH 30346, when users specifying those arguments explicitly, our defaults
# for these four kwargs should be overridden; if not, use Pandas settings
if not kwds.get("boxprops"):
setp(bp["boxes"], color=colors[0], alpha=1)
if not kwds.get("whiskerprops"):
setp(bp["whiskers"], color=colors[1], alpha=1)
if not kwds.get("medianprops"):
setp(bp["medians"], color=colors[2], alpha=1)
if not kwds.get("capprops"):
setp(bp["caps"], color=colors[3], alpha=1)
def plot_group(keys, values, ax: Axes):
keys = [pprint_thing(x) for x in keys]
values = [np.asarray(remove_na_arraylike(v), dtype=object) for v in values]
bp = ax.boxplot(values, **kwds)
if fontsize is not None:
ax.tick_params(axis="both", labelsize=fontsize)
if kwds.get("vert", 1):
ticks = ax.get_xticks()
if len(ticks) != len(keys):
i, remainder = divmod(len(ticks), len(keys))
assert remainder == 0, remainder
keys *= i
ax.set_xticklabels(keys, rotation=rot)
else:
ax.set_yticklabels(keys, rotation=rot)
maybe_color_bp(bp, **kwds)
# Return axes in multiplot case, maybe revisit later # 985
if return_type == "dict":
return bp
elif return_type == "both":
return BoxPlot.BP(ax=ax, lines=bp)
else:
return ax
colors = _get_colors()
if column is None:
columns = None
else:
if isinstance(column, (list, tuple)):
columns = column
else:
columns = [column]
if by is not None:
# Prefer array return type for 2-D plots to match the subplot layout
# https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580
result = _grouped_plot_by_column(
plot_group,
data,
columns=columns,
by=by,
grid=grid,
figsize=figsize,
ax=ax,
layout=layout,
return_type=return_type,
)
else:
if return_type is None:
return_type = "axes"
if layout is not None:
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
if ax is None:
rc = {"figure.figsize": figsize} if figsize is not None else {}
with plt.rc_context(rc):
ax = plt.gca()
data = data.apply(pd.to_numeric, errors="ignore")
data = data._get_numeric_data()
if columns is None:
columns = data.columns
else:
data = data[columns]
result = plot_group(columns, data.values.T, ax)
ax.grid(grid)
return result
def boxplot_frame(
self,
column=None,
by=None,
ax=None,
fontsize=None,
rot=0,
grid=True,
figsize=None,
layout=None,
return_type=None,
**kwds,
):
import matplotlib.pyplot as plt
ax = boxplot(
self,
column=column,
by=by,
ax=ax,
fontsize=fontsize,
grid=grid,
rot=rot,
figsize=figsize,
layout=layout,
return_type=return_type,
**kwds,
)
plt.draw_if_interactive()
return ax
def boxplot_frame_groupby(
grouped,
subplots=True,
column=None,
fontsize=None,
rot=0,
grid=True,
ax=None,
figsize=None,
layout=None,
sharex=False,
sharey=True,
**kwds,
):
if subplots is True:
naxes = len(grouped)
fig, axes = create_subplots(
naxes=naxes,
squeeze=False,
ax=ax,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
)
axes = flatten_axes(axes)
ret = pd.Series(dtype=object)
for (key, group), ax in zip(grouped, axes):
d = group.boxplot(
ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds
)
ax.set_title(pprint_thing(key))
ret.loc[key] = d
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
else:
keys, frames = zip(*grouped)
if grouped.axis == 0:
df = pd.concat(frames, keys=keys, axis=1)
else:
if len(frames) > 1:
df = frames[0].join(frames[1::])
else:
df = frames[0]
# GH 16748, DataFrameGroupby fails when subplots=False and `column` argument
# is assigned, and in this case, since `df` here becomes MI after groupby,
# so we need to couple the keys (grouped values) and column (original df
# column) together to search for subset to plot
if column is not None:
column = com.convert_to_list_like(column)
multi_key = pd.MultiIndex.from_product([keys, column])
column = list(multi_key.values)
ret = df.boxplot(
column=column,
fontsize=fontsize,
rot=rot,
grid=grid,
ax=ax,
figsize=figsize,
layout=layout,
**kwds,
)
return ret