Skip to content

Commit d691ba0

Browse files
committed
DOC: Tighten ecosystem->data science per numpy#242
Proposed edit per @rgommers comment in numpy#242: "Still would like to make this tab a little more compact."
1 parent bd8ea37 commit d691ba0

File tree

1 file changed

+15
-69
lines changed

1 file changed

+15
-69
lines changed

layouts/partials/data-science.html

+15-69
Original file line numberDiff line numberDiff line change
@@ -8,74 +8,20 @@
88
</div>
99
<div>
1010
<p>
11-
NumPy lies at the core of a rich ecosystem of data science libraries.
11+
NumPy lies at the core of a rich ecosystem of data science libraries:
1212
</p>
13-
<p>
14-
Data science is the analysis of massive amounts of data
15-
to gain insight. A typical workflow might be:
16-
17-
<ul class="content-tab">
18-
<li><b>Extract, Transform, Load (ETL):</b>
19-
<a href="https://pandas.pydata.org">Pandas</a>,
20-
<a href="https://www.crummy.com/software/BeautifulSoup/">Beautiful Soup</a>,
21-
<a href="https://intake.readthedocs.io/en/latest/"> Intake</a>
22-
</li>
23-
24-
<li><b>Explore:</b>
25-
<a href="https://seaborn.pydata.org"> Seaborn</a>,
26-
<a href="https://matplotlib.org">Matplotlib</a>,
27-
28-
</li>
29-
30-
<li><b>Model:</b>
31-
<a href="https://scikit-learn.org">scikit-learn</a>,
32-
<a href="https://www.scipy.org">SciPy</a>,
33-
<a href="https://www.statsmodels.org/stable/index.html"> statsmodels</a>.
34-
</li>
35-
36-
<li><b>Evaluate:</b>
37-
NumPy,
38-
<a href="https://www.tensorflow.org">TensorFlow</a>
39-
</li>
40-
41-
<li>
42-
<b>Display:</b>
43-
<a href="./index.html/#tab-visual"> Data Visualization Tools</a>
44-
</li>
45-
</ul>
46-
</p>
47-
</div>
48-
</div>
49-
<div class="grid-container">
50-
<div>
51-
<p>
52-
<a href="https://pandas.pydata.org">Pandas </a>helps in data discovery and handling,
53-
<a href="https://intake.readthedocs.io/en/latest/"> Intake</a> helps with
54-
data access and distribution, while
55-
<a href="https://www.crummy.com/software/BeautifulSoup/">Beautiful Soup</a>
56-
is widely used for web-scraping and gathering data sets.
57-
<a href="https://seaborn.pydata.org"> Seaborn</a> is well known for
58-
<a href="https://towardsdatascience.com/how-to-perform-exploratory-data-analysis-with-seaborn-97e3413e841d">exploratory data analysis (EDA)</a>;
59-
<a href="https://scikit-learn.org">scikit-learn</a> and
60-
<a href="https://www.scipy.org">SciPy</a> (statistical computing) serve some
61-
of the backbone processes required for machine learning (regression methods,
62-
classification, clustering, model validation and selection).
63-
Statistical data exploration, estimation of various statistical models,
64-
and conducting statistical tests are some of the functions offered by
65-
<a href="https://www.statsmodels.org/stable/index.html"> statsmodels</a>.
66-
</p>
67-
</div>
68-
<div>
69-
<img src="images/content_images/data-science.png" alt="Diagram of three overlapping circle. The circles labeled 'Mathematics', 'Computer Science' and 'Domain Expertise'. In the middle of the diagram, which has the three circles overlapping it, is an area labeled 'Data Science'." align="centre" width="75%">
13+
<ul>
14+
<li><a href="https://pandas.pydata.org">Pandas</a> for data discovery and handling</li>
15+
<li><a href="https://intake.readthedocs.io/en/latest/"> Intake</a> for
16+
data access and distribution</li>
17+
<li><a href="https://www.crummy.com/software/BeautifulSoup/">Beautiful Soup</a>
18+
for web-scraping and gathering data sets</li>
19+
<li><a href="https://seaborn.pydata.org"> Seaborn</a> for
20+
<a href="https://towardsdatascience.com/how-to-perform-exploratory-data-analysis-with-seaborn-97e3413e841d">exploratory data analysis (EDA)</a></li>
21+
<li><a href="https://scikit-learn.org">scikit-learn</a> and
22+
<a href="https://www.scipy.org">SciPy</a> for
23+
backbone processes of machine learning</li>
24+
<li><a href="https://www.statsmodels.org/stable/index.html"> statsmodels</a>
25+
for statistical tests.</li>
26+
</ul>
7027
</div>
71-
</div>
72-
<p>
73-
Effective data analytics requires deep knowledge of the data domain (e.g.,
74-
retail, healthcare, marketing, finance, social media, automation, sales, travel,
75-
etc.) as well as other core disciplines of data science, data engineering, and
76-
data visualization. Tools such as <a href="https://mlflow.org">MLFlow</a> address
77-
experiment hyperparameter and result tracking needs, while
78-
<a href="https://dvc.org"> DVC</a> provides data version control for data science
79-
and machine learning workflows.
80-
</p>
81-
</li>

0 commit comments

Comments
 (0)