forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv0.19.0.txt
663 lines (445 loc) · 28.1 KB
/
v0.19.0.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
.. _whatsnew_0190:
v0.19.0 (August ??, 2016)
-------------------------
This is a major release from 0.18.2 and includes a small number of API changes, several new features,
enhancements, and performance improvements along with a large number of bug fixes. We recommend that all
users upgrade to this version.
Highlights include:
- :func:`merge_asof` for asof-style time-series joining, see :ref:`here <whatsnew_0190.enhancements.asof_merge>`
- pandas development api, see :ref:`here <whatsnew_0190.dev_api>`
.. contents:: What's new in v0.18.2
:local:
:backlinks: none
.. _whatsnew_0190.new_features:
New features
~~~~~~~~~~~~
.. _whatsnew_0190.dev_api:
pandas development API
^^^^^^^^^^^^^^^^^^^^^^
As part of making pandas APi more uniform and accessible in the future, we have created a standard
sub-package of pandas, ``pandas.api`` to hold public API's. We are starting by exposing type
introspection functions in ``pandas.api.types``. More sub-packages and officially sanctioned API's
will be published in future versions of pandas.
The following are now part of this API:
.. ipython:: python
import pprint
from pandas.api import types
funcs = [ f for f in dir(types) if not f.startswith('_') ]
pprint.pprint(funcs)
.. _whatsnew_0190.enhancements.asof_merge:
:func:`merge_asof` for asof-style time-series joining
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A long-time requested feature has been added through the :func:`merge_asof` function, to
support asof style joining of time-series. (:issue:`1870`, :issue:`13695`). Full documentation is
:ref:`here <merging.merge_asof>`
The :func:`merge_asof` performs an asof merge, which is similar to a left-join
except that we match on nearest key rather than equal keys.
.. ipython:: python
left = pd.DataFrame({'a': [1, 5, 10],
'left_val': ['a', 'b', 'c']})
right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
'right_val': [1, 2, 3, 6, 7]})
left
right
We typically want to match exactly when possible, and use the most
recent value otherwise.
.. ipython:: python
pd.merge_asof(left, right, on='a')
We can also match rows ONLY with prior data, and not an exact match.
.. ipython:: python
pd.merge_asof(left, right, on='a', allow_exact_matches=False)
In a typical time-series example, we have ``trades`` and ``quotes`` and we want to ``asof-join`` them.
This also illustrates using the ``by`` parameter to group data before merging.
.. ipython:: python
trades = pd.DataFrame({
'time': pd.to_datetime(['20160525 13:30:00.023',
'20160525 13:30:00.038',
'20160525 13:30:00.048',
'20160525 13:30:00.048',
'20160525 13:30:00.048']),
'ticker': ['MSFT', 'MSFT',
'GOOG', 'GOOG', 'AAPL'],
'price': [51.95, 51.95,
720.77, 720.92, 98.00],
'quantity': [75, 155,
100, 100, 100]},
columns=['time', 'ticker', 'price', 'quantity'])
quotes = pd.DataFrame({
'time': pd.to_datetime(['20160525 13:30:00.023',
'20160525 13:30:00.023',
'20160525 13:30:00.030',
'20160525 13:30:00.041',
'20160525 13:30:00.048',
'20160525 13:30:00.049',
'20160525 13:30:00.072',
'20160525 13:30:00.075']),
'ticker': ['GOOG', 'MSFT', 'MSFT',
'MSFT', 'GOOG', 'AAPL', 'GOOG',
'MSFT'],
'bid': [720.50, 51.95, 51.97, 51.99,
720.50, 97.99, 720.50, 52.01],
'ask': [720.93, 51.96, 51.98, 52.00,
720.93, 98.01, 720.88, 52.03]},
columns=['time', 'ticker', 'bid', 'ask'])
.. ipython:: python
trades
quotes
An asof merge joins on the ``on``, typically a datetimelike field, which is ordered, and
in this case we are using a grouper in the ``by`` field. This is like a left-outer join, except
that forward filling happens automatically taking the most recent non-NaN value.
.. ipython:: python
pd.merge_asof(trades, quotes,
on='time',
by='ticker')
This returns a merged DataFrame with the entries in the same order as the original left
passed DataFrame (``trades`` in this case), with the fields of the ``quotes`` merged.
.. _whatsnew_0190.enhancements.read_csv_dupe_col_names_support:
:func:`read_csv` has improved support for duplicate column names
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:ref:`Duplicate column names <io.dupe_names>` are now supported in :func:`read_csv` whether
they are in the file or passed in as the ``names`` parameter (:issue:`7160`, :issue:`9424`)
.. ipython :: python
data = '0,1,2\n3,4,5'
names = ['a', 'b', 'a']
Previous behaviour:
.. code-block:: ipython
In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:
a b a
0 2 1 2
1 5 4 5
The first 'a' column contains the same data as the second 'a' column, when it should have
contained the array ``[0, 3]``.
New behaviour:
.. ipython :: python
In [2]: pd.read_csv(StringIO(data), names=names)
.. _whatsnew_0190.enhancements.semi_month_offsets:
Semi-Month Offsets
^^^^^^^^^^^^^^^^^^
Pandas has gained new frequency offsets, ``SemiMonthEnd`` ('SM') and ``SemiMonthBegin`` ('SMS').
These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively.
(:issue:`1543`)
.. ipython:: python
from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin
SemiMonthEnd:
.. ipython:: python
Timestamp('2016-01-01') + SemiMonthEnd()
pd.date_range('2015-01-01', freq='SM', periods=4)
SemiMonthBegin:
.. ipython:: python
Timestamp('2016-01-01') + SemiMonthBegin()
pd.date_range('2015-01-01', freq='SMS', periods=4)
Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.
.. ipython:: python
pd.date_range('2015-01-01', freq='SMS-16', periods=4)
pd.date_range('2015-01-01', freq='SM-14', periods=4)
.. _whatsnew_0190.enhancements.other:
Other enhancements
^^^^^^^^^^^^^^^^^^
- The ``.tz_localize()`` method of ``DatetimeIndex`` and ``Timestamp`` has gained the ``errors`` keyword, so you can potentially coerce nonexistent timestamps to ``NaT``. The default behaviour remains to raising a ``NonExistentTimeError`` (:issue:`13057`)
- ``pd.to_numeric()`` now accepts a ``downcast`` parameter, which will downcast the data if possible to smallest specified numerical dtype (:issue:`13352`)
.. ipython:: python
s = ['1', 2, 3]
pd.to_numeric(s, downcast='unsigned')
pd.to_numeric(s, downcast='integer')
- ``Index`` now supports ``.str.extractall()`` which returns a ``DataFrame``, the see :ref:`docs here <text.extractall>` (:issue:`10008`, :issue:`13156`)
- ``.to_hdf/read_hdf()`` now accept path objects (e.g. ``pathlib.Path``, ``py.path.local``) for the file path (:issue:`11773`)
.. ipython:: python
idx = pd.Index(["a1a2", "b1", "c1"])
idx.str.extractall("[ab](?P<digit>\d)")
- ``Timestamp`` can now accept positional and keyword parameters similar to :func:`datetime.datetime` (:issue:`10758`, :issue:`11630`)
.. ipython:: python
pd.Timestamp(2012, 1, 1)
pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30)
- The ``pd.read_csv()`` with ``engine='python'`` has gained support for the ``decimal`` option (:issue:`12933`)
- The ``pd.read_csv()`` with ``engine='python'`` has gained support for the ``na_filter`` option (:issue:`13321`)
- The ``pd.read_csv()`` with ``engine='python'`` has gained support for the ``memory_map`` option (:issue:`13381`)
- ``Index.astype()`` now accepts an optional boolean argument ``copy``, which allows optional copying if the requirements on dtype are satisfied (:issue:`13209`)
- ``Index`` now supports the ``.where()`` function for same shape indexing (:issue:`13170`)
.. ipython:: python
idx = pd.Index(['a', 'b', 'c'])
idx.where([True, False, True])
- ``Categorical.astype()`` now accepts an optional boolean argument ``copy``, effective when dtype is categorical (:issue:`13209`)
- ``DataFrame`` has gained the ``.asof()`` method to return the last non-NaN values according to the selected subset (:issue:`13358`)
- Consistent with the Python API, ``pd.read_csv()`` will now interpret ``+inf`` as positive infinity (:issue:`13274`)
- The ``DataFrame`` constructor will now respect key ordering if a list of ``OrderedDict`` objects are passed in (:issue:`13304`)
- ``pd.read_html()`` has gained support for the ``decimal`` option (:issue:`12907`)
- A function :func:`union_categorical` has been added for combining categoricals, see :ref:`Unioning Categoricals<categorical.union>` (:issue:`13361`)
- ``Series`` has gained the properties ``.is_monotonic``, ``.is_monotonic_increasing``, ``.is_monotonic_decreasing``, similar to ``Index`` (:issue:`13336`)
- ``Series.append`` now supports the ``ignore_index`` option (:issue:`13677`)
- ``.to_stata()`` and ```StataWriter`` can now write variable labels to Stata dta files using a dictionary to make column names to labels (:issue:`13535`, :issue:`13536`)
.. _whatsnew_0190.api:
API changes
~~~~~~~~~~~
- ``Index.reshape`` will raise a ``NotImplementedError`` exception when called (:issue: `12882`)
- Non-convertible dates in an excel date column will be returned without conversion and the column will be ``object`` dtype, rather than raising an exception (:issue:`10001`)
- ``eval``'s upcasting rules for ``float32`` types have been updated to be more consistent with NumPy's rules. New behavior will not upcast to ``float64`` if you multiply a pandas ``float32`` object by a scalar float64. (:issue:`12388`)
- An ``UnsupportedFunctionCall`` error is now raised if NumPy ufuncs like ``np.mean`` are called on groupby or resample objects (:issue:`12811`)
- Calls to ``.sample()`` will respect the random seed set via ``numpy.random.seed(n)`` (:issue:`13161`)
- ``Styler.apply`` is now more strict about the outputs your function must return. For ``axis=0`` or ``axis=1``, the output shape must be identical. For ``axis=None``, the output must be a DataFrame with identical columns and index labels. (:issue:`13222`)
- ``Float64Index.astype(int)`` will now raise ``ValueError`` if ``Float64Index`` contains ``NaN`` values (:issue:`13149`)
- ``TimedeltaIndex.astype(int)`` and ``DatetimeIndex.astype(int)`` will now return ``Int64Index`` instead of ``np.array`` (:issue:`13209`)
- ``.filter()`` enforces mutual exclusion of the keyword arguments. (:issue:`12399`)
- ``PeridIndex`` can now accept ``list`` and ``array`` which contains ``pd.NaT`` (:issue:`13430`)
- ``__setitem__`` will no longer apply a callable rhs as a function instead of storing it. Call ``where`` directly to get the previous behavior. (:issue:`13299`)
- Passing ``Period`` with multiple frequencies to normal ``Index`` now returns ``Index`` with ``object`` dtype (:issue:`13664`)
- ``PeriodIndex.fillna`` with ``Period`` has different freq now coerces to ``object`` dtype (:issue:`13664`)
- More informative exceptions are passed through the parser. The exception type would now be the original exception type instead of ``CParserError``. (:issue `13652`)
.. _whatsnew_0190.api.tolist:
``Series.tolist()`` will now return Python types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Series.tolist()`` will now return Python types in the output, mimicking NumPy ``.tolist()`` behaviour (:issue:`10904`)
.. ipython:: python
s = pd.Series([1,2,3])
type(s.tolist()[0])
Previous Behavior:
.. code-block:: ipython
In [7]: type(s.tolist()[0])
Out[7]:
<class 'numpy.int64'>
New Behavior:
.. ipython:: python
type(s.tolist()[0])
.. _whatsnew_0190.api.promote:
``Series`` type promotion on assignment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A ``Series`` will now correctly promote its dtype for assignment with incompat values to the current dtype (:issue:`13234`)
.. ipython:: python
s = pd.Series()
Previous Behavior:
.. code-block:: ipython
In [2]: s["a"] = pd.Timestamp("2016-01-01")
In [3]: s["b"] = 3.0
TypeError: invalid type promotion
New Behavior:
.. ipython:: python
s["a"] = pd.Timestamp("2016-01-01")
s["b"] = 3.0
s
s.dtype
.. _whatsnew_0190.api.to_datetime_coerce:
``.to_datetime()`` when coercing
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A bug is fixed in ``.to_datetime()`` when passing integers or floats, and no ``unit`` and ``errors='coerce'`` (:issue:`13180`).
Previously if ``.to_datetime()`` encountered mixed integers/floats and strings, but no datetimes with ``errors='coerce'`` it would convert all to ``NaT``.
Previous Behavior:
.. code-block:: ipython
In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[2]: DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
This will now convert integers/floats with the default unit of ``ns``.
.. ipython:: python
pd.to_datetime([1, 'foo'], errors='coerce')
.. _whatsnew_0190.api.merging:
Merging changes
^^^^^^^^^^^^^^^
Merging will now preserve the dtype of the join keys (:issue:`8596`)
.. ipython:: python
df1 = pd.DataFrame({'key': [1], 'v1': [10]})
df1
df2 = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]})
df2
Previous Behavior:
.. code-block:: ipython
In [5]: pd.merge(df1, df2, how='outer')
Out[5]:
key v1
0 1.0 10.0
1 1.0 20.0
2 2.0 30.0
In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
key float64
v1 float64
dtype: object
New Behavior:
We are able to preserve the join keys
.. ipython:: python
pd.merge(df1, df2, how='outer')
pd.merge(df1, df2, how='outer').dtypes
Of course if you have missing values that are introduced, then the
resulting dtype will be upcast, which is unchanged from previous.
.. ipython:: python
pd.merge(df1, df2, how='outer', on='key')
pd.merge(df1, df2, how='outer', on='key').dtypes
.. _whatsnew_0190.api.describe:
``.describe()`` changes
^^^^^^^^^^^^^^^^^^^^^^^
Percentile identifiers in the index of a ``.describe()`` output will now be rounded to the least precision that keeps them distinct (:issue:`13104`)
.. ipython:: python
s = pd.Series([0, 1, 2, 3, 4])
df = pd.DataFrame([0, 1, 2, 3, 4])
Previous Behavior:
The percentiles were rounded to at most one decimal place, which could raise ``ValueError`` for a data frame if the percentiles were duplicated.
.. code-block:: ipython
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
0.0% 0.000400
0.1% 0.002000
0.1% 0.004000
50% 2.000000
99.9% 3.996000
100.0% 3.998000
100.0% 3.999600
max 4.000000
dtype: float64
In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:
...
ValueError: cannot reindex from a duplicate axis
New Behavior:
.. ipython:: python
s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Furthermore:
- Passing duplicated ``percentiles`` will now raise a ``ValueError``.
- Bug in ``.describe()`` on a DataFrame with a mixed-dtype column index, which would previously raise a ``TypeError`` (:issue:`13288`)
.. _whatsnew_0190.api.periodnat:
``Period('NaT')`` now returns ``pd.NaT``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Previously, ``Period`` has its own ``Period('NaT')`` representation different from ``pd.NaT``. Now ``Period('NaT')`` has been changed to return ``pd.NaT``. (:issue:`12759`, :issue:`13582`)
Previous Behavior:
.. code-block:: ipython
In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')
New Behavior:
.. ipython:: python
pd.Period('NaT')
To be compat with ``Period`` addition and subtraction, ``pd.NaT`` now supports addition and subtraction with ``int``. Previously it raises ``ValueError``.
Previous Behavior:
.. code-block:: ipython
In [5]: pd.NaT + 1
...
ValueError: Cannot add integral value to Timestamp without freq.
New Behavior:
.. ipython:: python
pd.NaT + 1
pd.NaT - 1
.. _whatsnew_0190.api.difference:
``Index.difference`` and ``.symmetric_difference`` changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
``Index.difference`` and ``Index.symmetric_difference`` will now, more consistently, treat ``NaN`` values as any other values. (:issue:`13514`)
.. ipython:: python
idx1 = pd.Index([1, 2, 3, np.nan])
idx2 = pd.Index([0, 1, np.nan])
Previous Behavior:
.. code-block:: ipython
In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')
In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')
New Behavior:
.. ipython:: python
idx1.difference(idx2)
idx1.symmetric_difference(idx2)
.. _whatsnew_0190.deprecations:
Deprecations
^^^^^^^^^^^^
- ``Categorical.reshape`` has been deprecated and will be removed in a subsequent release (:issue:`12882`)
- ``Series.reshape`` has been deprecated and will be removed in a subsequent release (:issue:`12882`)
- ``compact_ints`` and ``use_unsigned`` have been deprecated in ``pd.read_csv()`` and will be removed in a future version (:issue:`13320`)
- ``buffer_lines`` has been deprecated in ``pd.read_csv()`` and will be removed in a future version (:issue:`13360`)
- ``as_recarray`` has been deprecated in ``pd.read_csv()`` and will be removed in a future version (:issue:`13373`)
- top-level ``pd.ordered_merge()`` has been renamed to ``pd.merge_ordered()`` and the original name will be removed in a future version (:issue:`13358`)
- ``Timestamp.offset`` property (and named arg in the constructor), has been deprecated in favor of ``freq`` (:issue:`12160`)
.. _whatsnew_0190.prior_deprecations:
Removal of prior version deprecations/changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- The ``pd.sandbox`` module has been removed in favor of the external library ``pandas-qt`` (:issue:`13670`)
- ``DataFrame.to_csv()`` has dropped the ``engine`` parameter, as was deprecated in 0.17.1 (:issue:`11274`, :issue:`13419`)
- ``DataFrame.to_dict()`` has dropped the ``outtype`` parameter in favor of ``orient`` (:issue:`13627`, :issue:`8486`)
- ``pd.Categorical`` has dropped setting of the ``ordered`` attribute directly in favor of the ``set_ordered`` method (:issue:`13671`)
- ``pd.Categorical`` has dropped the ``levels`` attribute in favour of ``categories`` (:issue:`8376`)
- Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (:issue:`13590`)
Previous Behavior:
.. code-block:: ipython
In [2]: pd.date_range('2016-07-01', freq='W@MON', periods=3)
pandas/tseries/frequencies.py:465: FutureWarning: Freq "W@MON" is deprecated, use "W-MON" as alternative.
Out[2]: DatetimeIndex(['2016-07-04', '2016-07-11', '2016-07-18'], dtype='datetime64[ns]', freq='W-MON')
Now legacy time rules raises ``ValueError``. For the list of currently supported offsets, see :ref:`here <timeseries.alias>`
.. _whatsnew_0190.performance:
Performance Improvements
~~~~~~~~~~~~~~~~~~~~~~~~
- Improved performance of sparse ``IntIndex.intersect`` (:issue:`13082`)
- Improved performance of sparse arithmetic with ``BlockIndex`` when the number of blocks are large, though recommended to use ``IntIndex`` in such cases (:issue:`13082`)
- increased performance of ``DataFrame.quantile()`` as it now operates per-block (:issue:`11623`)
- Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (:issue:`13166`, :issue:`13334`)
- Improved performance of ``DataFrameGroupBy.transform`` (:issue:`12737`)
- Improved performance of ``Index.difference`` (:issue:`12044`)
.. _whatsnew_0190.bug_fixes:
Bug Fixes
~~~~~~~~~
- Bug in ``io.json.json_normalize()``, where non-ascii keys raised an exception (:issue:`13213`)
- Bug in ``SparseSeries`` with ``MultiIndex`` ``[]`` indexing may raise ``IndexError`` (:issue:`13144`)
- Bug in ``SparseSeries`` with ``MultiIndex`` ``[]`` indexing result may have normal ``Index`` (:issue:`13144`)
- Bug in ``SparseDataFrame`` in which ``axis=None`` did not default to ``axis=0`` (:issue:`13048`)
- Bug in ``SparseSeries`` and ``SparseDataFrame`` creation with ``object`` dtype may raise ``TypeError`` (:issue:`11633`)
- Bug when passing a not-default-indexed ``Series`` as ``xerr`` or ``yerr`` in ``.plot()`` (:issue:`11858`)
- Bug in matplotlib ``AutoDataFormatter``; this restores the second scaled formatting and re-adds micro-second scaled formatting (:issue:`13131`)
- Bug in selection from a ``HDFStore`` with a fixed format and ``start`` and/or ``stop`` specified will now return the selected range (:issue:`8287`)
- Bug in ``Series`` construction from a tuple of integers on windows not returning default dtype (int64) (:issue:`13646`)
- Bug in ``.groupby(..).resample(..)`` when the same object is called multiple times (:issue:`13174`)
- Bug in ``.to_records()`` when index name is a unicode string (:issue:`13172`)
- Bug in calling ``.memory_usage()`` on object which doesn't implement (:issue:`12924`)
- Regression in ``Series.quantile`` with nans (also shows up in ``.median()`` and ``.describe()`` ); furthermore now names the ``Series`` with the quantile (:issue:`13098`, :issue:`13146`)
- Bug in ``SeriesGroupBy.transform`` with datetime values and missing groups (:issue:`13191`)
- Bug in ``Series.str.extractall()`` with ``str`` index raises ``ValueError`` (:issue:`13156`)
- Bug in ``Series.str.extractall()`` with single group and quantifier (:issue:`13382`)
- Bug in ``DatetimeIndex`` and ``Period`` subtraction raises ``ValueError`` or ``AttributeError`` rather than ``TypeError`` (:issue:`13078`)
- Bug in ``Index`` and ``Series`` created with ``NaN`` and ``NaT`` mixed data may not have ``datetime64`` dtype (:issue:`13324`)
- Bug in ``Index`` and ``Series`` may ignore ``np.datetime64('nat')`` and ``np.timdelta64('nat')`` to infer dtype (:issue:`13324`)
- Bug in ``PeriodIndex`` and ``Period`` subtraction raises ``AttributeError`` (:issue:`13071`)
- Bug in ``PeriodIndex`` construction returning a ``float64`` index in some circumstances (:issue:`13067`)
- Bug in ``.resample(..)`` with a ``PeriodIndex`` not changing its ``freq`` appropriately when empty (:issue:`13067`)
- Bug in ``.resample(..)`` with a ``PeriodIndex`` not retaining its type or name with an empty ``DataFrame`` appropriately when empty (:issue:`13212`)
- Bug in ``groupby(..).apply(..)`` when the passed function returns scalar values per group (:issue:`13468`).
- Bug in ``groupby(..).resample(..)`` where passing some keywords would raise an exception (:issue:`13235`)
- Bug in ``.tz_convert`` on a tz-aware ``DateTimeIndex`` that relied on index being sorted for correct results (:issue:`13306`)
- Bug in ``.tz_localize`` with ``dateutil.tz.tzlocal`` may return incorrect result (:issue:`13583`)
- Bug in ``DatetimeTZDtype`` dtype with ``dateutil.tz.tzlocal`` cannot be regarded as valid dtype (:issue:`13583`)
- Bug in ``pd.read_hdf()`` where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (:issue:`13231`)
- Bug in ``.rolling()`` that allowed a negative integer window in contruction of the ``Rolling()`` object, but would later fail on aggregation (:issue:`13383`)
- Bug in various index types, which did not propagate the name of passed index (:issue:`12309`)
- Bug in ``DatetimeIndex``, which did not honour the ``copy=True`` (:issue:`13205`)
- Bug in ``DatetimeIndex.is_normalized`` returns incorrectly for normalized date_range in case of local timezones (:issue:`13459`)
- Bug in ``DataFrame.to_csv()`` in which float values were being quoted even though quotations were specified for non-numeric values only (:issue:`12922`, :issue:`13259`)
- Bug in ``MultiIndex`` slicing where extra elements were returned when level is non-unique (:issue:`12896`)
- Bug in ``.str.replace`` does not raise ``TypeError`` for invalid replacement (:issue:`13438`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which ``NaN`` values weren't being detected after data was converted to numeric values (:issue:`13314`)
- Bug in ``pd.read_csv()`` in which the ``nrows`` argument was not properly validated for both engines (:issue:`10476`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which infinities of mixed-case forms were not being interpreted properly (:issue:`13274`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` in which trailing ``NaN`` values were not being parsed (:issue:`13320`)
- Bug in ``pd.read_csv()`` with ``engine='python'`` when reading from a ``tempfile.TemporaryFile`` on Windows with Python 3 (:issue:`13398`)
- Bug in ``pd.read_csv()`` that prevents ``usecols`` kwarg from accepting single-byte unicode strings (:issue:`13219`)
- Bug in ``pd.read_csv()`` that prevents ``usecols`` from being an empty set (:issue:`13402`)
- Bug in ``pd.read_csv()`` with ``engine=='c'`` in which null ``quotechar`` was not accepted even though ``quoting`` was specified as ``None`` (:issue:`13411`)
- Bug in ``pd.read_csv()`` with ``engine=='c'`` in which fields were not properly cast to float when quoting was specified as non-numeric (:issue:`13411`)
- Bug in ``pd.pivot_table()`` where ``margins_name`` is ignored when ``aggfunc`` is a list (:issue:`13354`)
- Bug in ``pd.Series.str.zfill``, ``center``, ``ljust``, ``rjust``, and ``pad`` when passing non-integers, did not raise ``TypeError`` (:issue:`13598`)
- Bug in checking for any null objects in a ``TimedeltaIndex``, which always returned ``True`` (:issue:`13603`)
- Bug in ``Series`` arithmetic raises ``TypeError`` if it contains datetime-like as ``object`` dtype (:issue:`13043`)
- Bug in ``pd.to_datetime()`` when passing invalid datatypes (e.g. bool); will now respect the ``errors`` keyword (:issue:`13176`)
- Bug in ``pd.to_datetime()`` which overflowed on ``int8``, and ``int16`` dtypes (:issue:`13451`)
- Bug in extension dtype creation where the created types were not is/identical (:issue:`13285`)
- Bug in ``NaT`` - ``Period`` raises ``AttributeError`` (:issue:`13071`)
- Bug in ``Series`` comparison may output incorrect result if rhs contains ``NaT`` (:issue:`9005`)
- Bug in ``Series`` and ``Index`` comparison may output incorrect result if it contains ``NaT`` with ``object`` dtype (:issue:`13592`)
- Bug in ``Period`` addition raises ``TypeError`` if ``Period`` is on right hand side (:issue:`13069`)
- Bug in ``Peirod`` and ``Series`` or ``Index`` comparison raises ``TypeError`` (:issue:`13200`)
- Bug in ``pd.set_eng_float_format()`` that would prevent NaN's from formatting (:issue:`11981`)
- Bug in ``.unstack`` with ``Categorical`` dtype resets ``.ordered`` to ``True`` (:issue:`13249`)
- Clean some compile time warnings in datetime parsing (:issue:`13607`)
- Bug in ``Series`` comparison operators when dealing with zero dim NumPy arrays (:issue:`13006`)
- Bug in ``groupby`` where ``apply`` returns different result depending on whether first result is ``None`` or not (:issue:`12824`)
- Bug in ``groupby(..).nth()`` where the group key is included inconsistently if called after ``.head()/.tail()`` (:issue:`12839`)
- Bug in ``.to_html``, ``.to_latex`` and ``.to_string`` silently ignore custom datetime formatter passed through the ``formatters`` key word (:issue:`10690`)
- Bug in ``pd.to_numeric`` when ``errors='coerce'`` and input contains non-hashable objects (:issue:`13324`)
- Bug in invalid ``Timedelta`` arithmetic and comparison may raise ``ValueError`` rather than ``TypeError`` (:issue:`13624`)
- Bug in ``Categorical.remove_unused_categories()`` changes ``.codes`` dtype to platform int (:issue:`13261`)
- Bug in ``groupby`` with ``as_index=False`` returns all NaN's when grouping on multiple columns including a categorical one (:issue:`13204`)
- Bug where ``pd.read_gbq()`` could throw ``ImportError: No module named discovery`` as a result of a naming conflict with another python package called apiclient (:issue:`13454`)
- Bug in ``Index.union`` returns an incorrect result with a named empty index (:issue:`13432`)
- Bugs in ``Index.difference`` and ``DataFrame.join`` raise in Python3 when using mixed-integer indexes (:issue:`13432`, :issue:`12814`)