forked from pandas-dev/pandas-stubs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pandas.py
277 lines (236 loc) · 8.24 KB
/
test_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Literal,
Union,
)
import numpy as np
from numpy import typing as npt
import pandas as pd
from pandas.api.extensions import ExtensionArray
import pytest
from typing_extensions import assert_type
from tests import check
def test_types_to_datetime() -> None:
df = pd.DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]})
r1: pd.Series = pd.to_datetime(df)
r2: pd.Series = pd.to_datetime(
df, unit="s", origin="unix", infer_datetime_format=True
)
r3: pd.Series = pd.to_datetime(
df, unit="ns", dayfirst=True, utc=None, format="%M:%D", exact=False
)
r4: pd.DatetimeIndex = pd.to_datetime(
[1, 2], unit="D", origin=pd.Timestamp("01/01/2000")
)
r5: pd.DatetimeIndex = pd.to_datetime([1, 2], unit="D", origin=3)
r6: pd.DatetimeIndex = pd.to_datetime(["2022-01-03", "2022-02-22"])
r7: pd.DatetimeIndex = pd.to_datetime(pd.Index(["2022-01-03", "2022-02-22"]))
r8: pd.Series = pd.to_datetime(
{"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}
)
def test_types_concat() -> None:
s: pd.Series = pd.Series([0, 1, -10])
s2: pd.Series = pd.Series([7, -5, 10])
check(assert_type(pd.concat([s, s2]), pd.Series), pd.Series)
check(assert_type(pd.concat([s, s2], axis=1), pd.DataFrame), pd.DataFrame)
check(
assert_type(pd.concat([s, s2], keys=["first", "second"], sort=True), pd.Series),
pd.Series,
)
check(
assert_type(
pd.concat([s, s2], keys=["first", "second"], names=["source", "row"]),
pd.Series,
),
pd.Series,
)
# Depends on the axis
rs1: pd.Series | pd.DataFrame = pd.concat({"a": s, "b": s2})
rs1a: pd.Series | pd.DataFrame = pd.concat({"a": s, "b": s2}, axis=1)
rs2: pd.Series | pd.DataFrame = pd.concat({1: s, 2: s2})
rs2a: pd.Series | pd.DataFrame = pd.concat({1: s, 2: s2}, axis=1)
rs3: pd.Series | pd.DataFrame = pd.concat({1: s, None: s2})
rs3a: pd.Series | pd.DataFrame = pd.concat({1: s, None: s2}, axis=1)
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
df2 = pd.DataFrame(data={"col1": [10, 20], "col2": [30, 40]})
check(assert_type(pd.concat([df, df2]), pd.DataFrame), pd.DataFrame)
check(assert_type(pd.concat([df, df2], axis=1), pd.DataFrame), pd.DataFrame)
check(
assert_type(
pd.concat([df, df2], keys=["first", "second"], sort=True), pd.DataFrame
),
pd.DataFrame,
)
check(
assert_type(
pd.concat([df, df2], keys=["first", "second"], names=["source", "row"]),
pd.DataFrame,
),
pd.DataFrame,
)
result: pd.DataFrame = pd.concat(
{"a": pd.DataFrame([1, 2, 3]), "b": pd.DataFrame([4, 5, 6])}, axis=1
)
result2: pd.DataFrame | pd.Series = pd.concat(
{"a": pd.Series([1, 2, 3]), "b": pd.Series([4, 5, 6])}, axis=1
)
rdf1: pd.DataFrame = pd.concat({"a": df, "b": df2})
rdf2: pd.DataFrame = pd.concat({1: df, 2: df2})
rdf3: pd.DataFrame = pd.concat({1: df, None: df2})
rdf4: pd.DataFrame = pd.concat(map(lambda x: s2, ["some_value", 3]), axis=1)
adict = {"a": df, 2: df2}
rdict: pd.DataFrame = pd.concat(adict)
def test_types_json_normalize() -> None:
data1: list[dict[str, Any]] = [
{"id": 1, "name": {"first": "Coleen", "last": "Volk"}},
{"name": {"given": "Mose", "family": "Regner"}},
{"id": 2, "name": "Faye Raker"},
]
df1: pd.DataFrame = pd.json_normalize(data=data1)
df2: pd.DataFrame = pd.json_normalize(data=data1, max_level=0, sep=";")
df3: pd.DataFrame = pd.json_normalize(
data=data1, meta_prefix="id", record_prefix="name", errors="raise"
)
df4: pd.DataFrame = pd.json_normalize(data=data1, record_path=None, meta="id")
data2: dict[str, Any] = {"name": {"given": "Mose", "family": "Regner"}}
df5: pd.DataFrame = pd.json_normalize(data=data2)
def test_isna() -> None:
# https://github.com/pandas-dev/pandas-stubs/issues/264
s1 = pd.Series([1, np.nan, 3.2])
check(assert_type(pd.isna(s1), "pd.Series[bool]"), pd.Series, bool)
s2 = pd.Series([1, 3.2])
check(assert_type(pd.notna(s2), "pd.Series[bool]"), pd.Series, bool)
df1 = pd.DataFrame({"a": [1, 2, 1, 2], "b": [1, 1, 2, np.nan]})
check(assert_type(pd.isna(df1), "pd.DataFrame"), pd.DataFrame)
idx1 = pd.Index([1, 2, np.nan])
check(assert_type(pd.isna(idx1), npt.NDArray[np.bool_]), np.ndarray, np.bool_)
idx2 = pd.Index([1, 2])
check(assert_type(pd.notna(idx2), npt.NDArray[np.bool_]), np.ndarray, np.bool_)
assert check(assert_type(pd.isna(pd.NA), Literal[True]), bool)
assert not check(assert_type(pd.notna(pd.NA), Literal[False]), bool)
assert check(assert_type(pd.isna(pd.NaT), Literal[True]), bool)
assert not check(assert_type(pd.notna(pd.NaT), Literal[False]), bool)
assert check(assert_type(pd.isna(None), Literal[True]), bool)
assert not check(assert_type(pd.notna(None), Literal[False]), bool)
check(assert_type(pd.isna(2.5), bool), bool)
check(assert_type(pd.notna(2.5), bool), bool)
# GH 55
def test_read_xml() -> None:
if TYPE_CHECKING: # Skip running pytest
check(
assert_type(
pd.read_xml(
"path/to/file", xpath=".//row", stylesheet="path/to/stylesheet"
),
pd.DataFrame,
),
pd.DataFrame,
)
def test_unique() -> None:
# Taken from the docs
check(
assert_type(
pd.unique(pd.Series([2, 1, 3, 3])), Union[np.ndarray, ExtensionArray]
),
np.ndarray,
)
check(
assert_type(
pd.unique(pd.Series([2] + [1] * 5)), Union[np.ndarray, ExtensionArray]
),
np.ndarray,
)
check(
assert_type(
pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])),
Union[np.ndarray, ExtensionArray],
),
np.ndarray,
)
check(
assert_type(
pd.unique(
pd.Series(
[
pd.Timestamp("20160101", tz="US/Eastern"),
pd.Timestamp("20160101", tz="US/Eastern"),
]
)
),
Union[np.ndarray, ExtensionArray],
),
pd.arrays.DatetimeArray,
)
check(
assert_type(
pd.unique(
pd.Index(
[
pd.Timestamp("20160101", tz="US/Eastern"),
pd.Timestamp("20160101", tz="US/Eastern"),
]
)
),
pd.Index,
),
pd.DatetimeIndex,
)
check(assert_type(pd.unique(list("baabc")), np.ndarray), np.ndarray)
check(
assert_type(
pd.unique(pd.Series(pd.Categorical(list("baabc")))),
Union[np.ndarray, ExtensionArray],
),
pd.Categorical,
)
check(
assert_type(
pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))),
Union[np.ndarray, ExtensionArray],
),
pd.Categorical,
)
check(
assert_type(
pd.unique(
pd.Series(
pd.Categorical(list("baabc"), categories=list("abc"), ordered=True)
)
),
Union[np.ndarray, ExtensionArray],
),
pd.Categorical,
)
check(
assert_type(
pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]), np.ndarray
),
np.ndarray,
)
# GH 200
def test_crosstab() -> None:
df = pd.DataFrame({"a": [1, 2, 1, 2], "b": [1, 1, 2, 2]})
check(
assert_type(
pd.crosstab(
index=df["a"],
columns=df["b"],
margins=True,
dropna=False,
normalize="columns",
),
pd.DataFrame,
),
pd.DataFrame,
)
def test_arrow_dtype() -> None:
pytest.importorskip("pyarrow")
import pyarrow as pa
check(
assert_type(
pd.ArrowDtype(pa.timestamp("s", tz="America/New_York")), pd.ArrowDtype
),
pd.ArrowDtype,
)