forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_expressions.py
461 lines (384 loc) · 18 KB
/
test_expressions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# -*- coding: utf-8 -*-
from __future__ import print_function
# pylint: disable-msg=W0612,E1101
from warnings import catch_warnings, simplefilter
import re
import operator
import pytest
from numpy.random import randn
import numpy as np
from pandas.core.api import DataFrame, Panel
from pandas.core.computation import expressions as expr
from pandas import compat, _np_version_under1p13
from pandas.util.testing import (assert_almost_equal, assert_series_equal,
assert_frame_equal, assert_panel_equal)
from pandas.io.formats.printing import pprint_thing
import pandas.util.testing as tm
_frame = DataFrame(randn(10000, 4), columns=list('ABCD'), dtype='float64')
_frame2 = DataFrame(randn(100, 4), columns=list('ABCD'), dtype='float64')
_mixed = DataFrame({'A': _frame['A'].copy(),
'B': _frame['B'].astype('float32'),
'C': _frame['C'].astype('int64'),
'D': _frame['D'].astype('int32')})
_mixed2 = DataFrame({'A': _frame2['A'].copy(),
'B': _frame2['B'].astype('float32'),
'C': _frame2['C'].astype('int64'),
'D': _frame2['D'].astype('int32')})
_integer = DataFrame(
np.random.randint(1, 100,
size=(10001, 4)),
columns=list('ABCD'), dtype='int64')
_integer2 = DataFrame(np.random.randint(1, 100, size=(101, 4)),
columns=list('ABCD'), dtype='int64')
with catch_warnings(record=True):
simplefilter("ignore", FutureWarning)
_frame_panel = Panel(dict(ItemA=_frame.copy(),
ItemB=(_frame.copy() + 3),
ItemC=_frame.copy(),
ItemD=_frame.copy()))
_frame2_panel = Panel(dict(ItemA=_frame2.copy(),
ItemB=(_frame2.copy() + 3),
ItemC=_frame2.copy(),
ItemD=_frame2.copy()))
_integer_panel = Panel(dict(ItemA=_integer,
ItemB=(_integer + 34).astype('int64')))
_integer2_panel = Panel(dict(ItemA=_integer2,
ItemB=(_integer2 + 34).astype('int64')))
_mixed_panel = Panel(dict(ItemA=_mixed, ItemB=(_mixed + 3)))
_mixed2_panel = Panel(dict(ItemA=_mixed2, ItemB=(_mixed2 + 3)))
@pytest.mark.skipif(not expr._USE_NUMEXPR, reason='not using numexpr')
class TestExpressions(object):
def setup_method(self, method):
self.frame = _frame.copy()
self.frame2 = _frame2.copy()
self.mixed = _mixed.copy()
self.mixed2 = _mixed2.copy()
self.integer = _integer.copy()
self._MIN_ELEMENTS = expr._MIN_ELEMENTS
def teardown_method(self, method):
expr._MIN_ELEMENTS = self._MIN_ELEMENTS
def run_arithmetic(self, df, other, assert_func, check_dtype=False,
test_flex=True):
expr._MIN_ELEMENTS = 0
operations = ['add', 'sub', 'mul', 'mod', 'truediv', 'floordiv']
if not compat.PY3:
operations.append('div')
for arith in operations:
operator_name = arith
if arith == 'div':
operator_name = 'truediv'
if test_flex:
op = lambda x, y: getattr(df, arith)(y)
op.__name__ = arith
else:
op = getattr(operator, operator_name)
expr.set_use_numexpr(False)
expected = op(df, other)
expr.set_use_numexpr(True)
result = op(df, other)
try:
if check_dtype:
if arith == 'truediv':
assert expected.dtype.kind == 'f'
assert_func(expected, result)
except Exception:
pprint_thing("Failed test with operator %r" % op.__name__)
raise
def test_integer_arithmetic(self):
self.run_arithmetic(self.integer, self.integer,
assert_frame_equal)
self.run_arithmetic(self.integer.iloc[:, 0],
self.integer.iloc[:, 0], assert_series_equal,
check_dtype=True)
def run_binary(self, df, other, assert_func, test_flex=False,
numexpr_ops={'gt', 'lt', 'ge', 'le', 'eq', 'ne'}):
"""
tests solely that the result is the same whether or not numexpr is
enabled. Need to test whether the function does the correct thing
elsewhere.
"""
expr._MIN_ELEMENTS = 0
expr.set_test_mode(True)
operations = ['gt', 'lt', 'ge', 'le', 'eq', 'ne']
for arith in operations:
if test_flex:
op = lambda x, y: getattr(df, arith)(y)
op.__name__ = arith
else:
op = getattr(operator, arith)
expr.set_use_numexpr(False)
expected = op(df, other)
expr.set_use_numexpr(True)
expr.get_test_result()
result = op(df, other)
used_numexpr = expr.get_test_result()
try:
if arith in numexpr_ops:
assert used_numexpr, "Did not use numexpr as expected."
else:
assert not used_numexpr, "Used numexpr unexpectedly."
assert_func(expected, result)
except Exception:
pprint_thing("Failed test with operation %r" % arith)
pprint_thing("test_flex was %r" % test_flex)
raise
def run_frame(self, df, other, binary_comp=None, run_binary=True,
**kwargs):
self.run_arithmetic(df, other, assert_frame_equal,
test_flex=False, **kwargs)
self.run_arithmetic(df, other, assert_frame_equal, test_flex=True,
**kwargs)
if run_binary:
if binary_comp is None:
expr.set_use_numexpr(False)
binary_comp = other + 1
expr.set_use_numexpr(True)
self.run_binary(df, binary_comp, assert_frame_equal,
test_flex=False, **kwargs)
self.run_binary(df, binary_comp, assert_frame_equal,
test_flex=True, **kwargs)
def run_series(self, ser, other, binary_comp=None, **kwargs):
self.run_arithmetic(ser, other, assert_series_equal,
test_flex=False, **kwargs)
self.run_arithmetic(ser, other, assert_almost_equal,
test_flex=True, **kwargs)
# series doesn't uses vec_compare instead of numexpr...
# if binary_comp is None:
# binary_comp = other + 1
# self.run_binary(ser, binary_comp, assert_frame_equal,
# test_flex=False, **kwargs)
# self.run_binary(ser, binary_comp, assert_frame_equal,
# test_flex=True, **kwargs)
def run_panel(self, panel, other, binary_comp=None, run_binary=True,
assert_func=assert_panel_equal, **kwargs):
self.run_arithmetic(panel, other, assert_func, test_flex=False,
**kwargs)
self.run_arithmetic(panel, other, assert_func, test_flex=True,
**kwargs)
if run_binary:
if binary_comp is None:
binary_comp = other + 1
self.run_binary(panel, binary_comp, assert_func,
test_flex=False, **kwargs)
self.run_binary(panel, binary_comp, assert_func,
test_flex=True, **kwargs)
def test_integer_arithmetic_frame(self):
self.run_frame(self.integer, self.integer)
def test_integer_arithmetic_series(self):
self.run_series(self.integer.iloc[:, 0], self.integer.iloc[:, 0])
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
def test_integer_panel(self):
self.run_panel(_integer2_panel, np.random.randint(1, 100))
def test_float_arithemtic_frame(self):
self.run_frame(self.frame2, self.frame2)
def test_float_arithmetic_series(self):
self.run_series(self.frame2.iloc[:, 0], self.frame2.iloc[:, 0])
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
def test_float_panel(self):
self.run_panel(_frame2_panel, np.random.randn() + 0.1, binary_comp=0.8)
def test_mixed_arithmetic_frame(self):
# TODO: FIGURE OUT HOW TO GET IT TO WORK...
# can't do arithmetic because comparison methods try to do *entire*
# frame instead of by-column
self.run_frame(self.mixed2, self.mixed2, run_binary=False)
def test_mixed_arithmetic_series(self):
for col in self.mixed2.columns:
self.run_series(self.mixed2[col], self.mixed2[col], binary_comp=4)
@pytest.mark.slow
@pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning")
def test_mixed_panel(self):
self.run_panel(_mixed2_panel, np.random.randint(1, 100),
binary_comp=-2)
def test_float_arithemtic(self):
self.run_arithmetic(self.frame, self.frame, assert_frame_equal)
self.run_arithmetic(self.frame.iloc[:, 0], self.frame.iloc[:, 0],
assert_series_equal, check_dtype=True)
def test_mixed_arithmetic(self):
self.run_arithmetic(self.mixed, self.mixed, assert_frame_equal)
for col in self.mixed.columns:
self.run_arithmetic(self.mixed[col], self.mixed[col],
assert_series_equal)
def test_integer_with_zeros(self):
self.integer *= np.random.randint(0, 2, size=np.shape(self.integer))
self.run_arithmetic(self.integer, self.integer,
assert_frame_equal)
self.run_arithmetic(self.integer.iloc[:, 0],
self.integer.iloc[:, 0], assert_series_equal)
def test_invalid(self):
# no op
result = expr._can_use_numexpr(operator.add, None, self.frame,
self.frame, 'evaluate')
assert not result
# mixed
result = expr._can_use_numexpr(operator.add, '+', self.mixed,
self.frame, 'evaluate')
assert not result
# min elements
result = expr._can_use_numexpr(operator.add, '+', self.frame2,
self.frame2, 'evaluate')
assert not result
# ok, we only check on first part of expression
result = expr._can_use_numexpr(operator.add, '+', self.frame,
self.frame2, 'evaluate')
assert result
def test_binary_ops(self):
def testit():
for f, f2 in [(self.frame, self.frame2),
(self.mixed, self.mixed2)]:
for op, op_str in [('add', '+'), ('sub', '-'), ('mul', '*'),
('div', '/'), ('pow', '**')]:
if op == 'pow':
continue
if op == 'div':
op = getattr(operator, 'truediv', None)
else:
op = getattr(operator, op, None)
if op is not None:
result = expr._can_use_numexpr(op, op_str, f, f,
'evaluate')
assert result != f._is_mixed_type
result = expr.evaluate(op, op_str, f, f,
use_numexpr=True)
expected = expr.evaluate(op, op_str, f, f,
use_numexpr=False)
if isinstance(result, DataFrame):
tm.assert_frame_equal(result, expected)
else:
tm.assert_numpy_array_equal(result,
expected.values)
result = expr._can_use_numexpr(op, op_str, f2, f2,
'evaluate')
assert not result
expr.set_use_numexpr(False)
testit()
expr.set_use_numexpr(True)
expr.set_numexpr_threads(1)
testit()
expr.set_numexpr_threads()
testit()
def test_boolean_ops(self):
def testit():
for f, f2 in [(self.frame, self.frame2),
(self.mixed, self.mixed2)]:
f11 = f
f12 = f + 1
f21 = f2
f22 = f2 + 1
for op, op_str in [('gt', '>'), ('lt', '<'), ('ge', '>='),
('le', '<='), ('eq', '=='), ('ne', '!=')]:
op = getattr(operator, op)
result = expr._can_use_numexpr(op, op_str, f11, f12,
'evaluate')
assert result != f11._is_mixed_type
result = expr.evaluate(op, op_str, f11, f12,
use_numexpr=True)
expected = expr.evaluate(op, op_str, f11, f12,
use_numexpr=False)
if isinstance(result, DataFrame):
tm.assert_frame_equal(result, expected)
else:
tm.assert_numpy_array_equal(result, expected.values)
result = expr._can_use_numexpr(op, op_str, f21, f22,
'evaluate')
assert not result
expr.set_use_numexpr(False)
testit()
expr.set_use_numexpr(True)
expr.set_numexpr_threads(1)
testit()
expr.set_numexpr_threads()
testit()
def test_where(self):
def testit():
for f in [self.frame, self.frame2, self.mixed, self.mixed2]:
for cond in [True, False]:
c = np.empty(f.shape, dtype=np.bool_)
c.fill(cond)
result = expr.where(c, f.values, f.values + 1)
expected = np.where(c, f.values, f.values + 1)
tm.assert_numpy_array_equal(result, expected)
expr.set_use_numexpr(False)
testit()
expr.set_use_numexpr(True)
expr.set_numexpr_threads(1)
testit()
expr.set_numexpr_threads()
testit()
def test_bool_ops_raise_on_arithmetic(self):
df = DataFrame({'a': np.random.rand(10) > 0.5,
'b': np.random.rand(10) > 0.5})
names = 'div', 'truediv', 'floordiv', 'pow'
ops = '/', '/', '//', '**'
msg = 'operator %r not implemented for bool dtypes'
for op, name in zip(ops, names):
if not compat.PY3 or name != 'div':
f = getattr(operator, name)
err_msg = re.escape(msg % op)
with pytest.raises(NotImplementedError, match=err_msg):
f(df, df)
with pytest.raises(NotImplementedError, match=err_msg):
f(df.a, df.b)
with pytest.raises(NotImplementedError, match=err_msg):
f(df.a, True)
with pytest.raises(NotImplementedError, match=err_msg):
f(False, df.a)
with pytest.raises(NotImplementedError, match=err_msg):
f(False, df)
with pytest.raises(NotImplementedError, match=err_msg):
f(df, True)
def test_bool_ops_warn_on_arithmetic(self):
n = 10
df = DataFrame({'a': np.random.rand(n) > 0.5,
'b': np.random.rand(n) > 0.5})
names = 'add', 'mul', 'sub'
ops = '+', '*', '-'
subs = {'+': '|', '*': '&', '-': '^'}
sub_funcs = {'|': 'or_', '&': 'and_', '^': 'xor'}
for op, name in zip(ops, names):
f = getattr(operator, name)
fe = getattr(operator, sub_funcs[subs[op]])
# >= 1.13.0 these are now TypeErrors
if op == '-' and not _np_version_under1p13:
continue
with tm.use_numexpr(True, min_elements=5):
with tm.assert_produces_warning(check_stacklevel=False):
r = f(df, df)
e = fe(df, df)
tm.assert_frame_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(df.a, df.b)
e = fe(df.a, df.b)
tm.assert_series_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(df.a, True)
e = fe(df.a, True)
tm.assert_series_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(False, df.a)
e = fe(False, df.a)
tm.assert_series_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(False, df)
e = fe(False, df)
tm.assert_frame_equal(r, e)
with tm.assert_produces_warning(check_stacklevel=False):
r = f(df, True)
e = fe(df, True)
tm.assert_frame_equal(r, e)
@pytest.mark.parametrize("test_input,expected", [
(DataFrame([[0, 1, 2, 'aa'], [0, 1, 2, 'aa']],
columns=['a', 'b', 'c', 'dtype']),
DataFrame([[False, False], [False, False]],
columns=['a', 'dtype'])),
(DataFrame([[0, 3, 2, 'aa'], [0, 4, 2, 'aa'], [0, 1, 1, 'bb']],
columns=['a', 'b', 'c', 'dtype']),
DataFrame([[False, False], [False, False],
[False, False]], columns=['a', 'dtype'])),
])
def test_bool_ops_column_name_dtype(self, test_input, expected):
# GH 22383 - .ne fails if columns containing column name 'dtype'
result = test_input.loc[:, ['a', 'dtype']].\
ne(test_input.loc[:, ['a', 'dtype']])
assert_frame_equal(result, expected)