-
Notifications
You must be signed in to change notification settings - Fork 420
/
Copy pathmetrics.py
228 lines (183 loc) · 8.08 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# NOTE: keeps for compatibility
from __future__ import annotations
from typing import TYPE_CHECKING, Any
from aws_lambda_powertools.metrics.provider.cloudwatch_emf.cloudwatch import AmazonCloudWatchEMFProvider
if TYPE_CHECKING:
from collections.abc import Callable
from aws_lambda_powertools.metrics.base import MetricResolution, MetricUnit
from aws_lambda_powertools.metrics.provider.cloudwatch_emf.types import CloudWatchEMFOutput
from aws_lambda_powertools.shared.types import AnyCallableT
class Metrics:
"""Metrics create an CloudWatch EMF object with up to 100 metrics
Use Metrics when you need to create multiple metrics that have
dimensions in common (e.g. service_name="payment").
Metrics up to 100 metrics in memory and are shared across
all its instances. That means it can be safely instantiated outside
of a Lambda function, or anywhere else.
A decorator (log_metrics) is provided so metrics are published at the end of its execution.
If more than 100 metrics are added at a given function execution,
these metrics are serialized and published before adding a given metric
to prevent metric truncation.
Example
-------
**Creates a few metrics and publish at the end of a function execution**
from aws_lambda_powertools import Metrics
metrics = Metrics(namespace="ServerlessAirline", service="payment")
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler():
metrics.add_metric(name="BookingConfirmation", unit="Count", value=1)
metrics.add_dimension(name="function_version", value="$LATEST")
return True
Environment variables
---------------------
POWERTOOLS_METRICS_NAMESPACE : str
metric namespace
POWERTOOLS_SERVICE_NAME : str
service name used for default dimension
POWERTOOLS_METRICS_DISABLED: bool
Powertools metrics disabled (e.g. `"true", "True", "TRUE"`)
Parameters
----------
service : str, optional
service name to be used as metric dimension, by default "service_undefined"
namespace : str, optional
Namespace for metrics
provider: AmazonCloudWatchEMFProvider, optional
Pre-configured AmazonCloudWatchEMFProvider provider
Raises
------
MetricUnitError
When metric unit isn't supported by CloudWatch
MetricResolutionError
When metric resolution isn't supported by CloudWatch
MetricValueError
When metric value isn't a number
SchemaValidationError
When metric object fails EMF schema validation
"""
# NOTE: We use class attrs to share metrics data across instances
# this allows customers to initialize Metrics() throughout their code base (and middlewares)
# and not get caught by accident with metrics data loss, or data deduplication
# e.g., m1 and m2 add metric ProductCreated, however m1 has 'version' dimension but m2 doesn't
# Result: ProductCreated is created twice as we now have 2 different EMF blobs
_metrics: dict[str, Any] = {}
_dimensions: dict[str, str] = {}
_metadata: dict[str, Any] = {}
_default_dimensions: dict[str, Any] = {}
def __init__(
self,
service: str | None = None,
namespace: str | None = None,
provider: AmazonCloudWatchEMFProvider | None = None,
function_name: str | None = None,
):
self.metric_set = self._metrics
self.metadata_set = self._metadata
self.default_dimensions = self._default_dimensions
self.dimension_set = self._dimensions
self.dimension_set.update(**self._default_dimensions)
if provider is None:
self.provider = AmazonCloudWatchEMFProvider(
namespace=namespace,
service=service,
metric_set=self.metric_set,
dimension_set=self.dimension_set,
metadata_set=self.metadata_set,
default_dimensions=self._default_dimensions,
function_name=function_name,
)
else:
self.provider = provider
def add_metric(
self,
name: str,
unit: MetricUnit | str,
value: float,
resolution: MetricResolution | int = 60,
) -> None:
self.provider.add_metric(name=name, unit=unit, value=value, resolution=resolution)
def add_dimension(self, name: str, value: str) -> None:
self.provider.add_dimension(name=name, value=value)
def serialize_metric_set(
self,
metrics: dict | None = None,
dimensions: dict | None = None,
metadata: dict | None = None,
) -> CloudWatchEMFOutput:
return self.provider.serialize_metric_set(metrics=metrics, dimensions=dimensions, metadata=metadata)
def add_metadata(self, key: str, value: Any) -> None:
self.provider.add_metadata(key=key, value=value)
def set_timestamp(self, timestamp: int):
"""
Set the timestamp for the metric.
Parameters:
-----------
timestamp: int | datetime.datetime
The timestamp to create the metric.
If an integer is provided, it is assumed to be the epoch time in milliseconds.
If a datetime object is provided, it will be converted to epoch time in milliseconds.
"""
self.provider.set_timestamp(timestamp=timestamp)
def flush_metrics(self, raise_on_empty_metrics: bool = False) -> None:
self.provider.flush_metrics(raise_on_empty_metrics=raise_on_empty_metrics)
def log_metrics(
self,
lambda_handler: AnyCallableT | None = None,
capture_cold_start_metric: bool = False,
raise_on_empty_metrics: bool = False,
default_dimensions: dict[str, str] | None = None,
**kwargs: dict[str, Any],
) -> Callable[..., Any]:
return self.provider.log_metrics(
lambda_handler=lambda_handler,
capture_cold_start_metric=capture_cold_start_metric,
raise_on_empty_metrics=raise_on_empty_metrics,
default_dimensions=default_dimensions,
**kwargs,
)
def set_default_dimensions(self, **dimensions) -> None:
self.provider.set_default_dimensions(**dimensions)
"""Persist dimensions across Lambda invocations
Parameters
----------
dimensions : dict[str, Any], optional
metric dimensions as key=value
Example
-------
**Sets some default dimensions that will always be present across metrics and invocations**
from aws_lambda_powertools import Metrics
metrics = Metrics(namespace="ServerlessAirline", service="payment")
metrics.set_default_dimensions(environment="demo", another="one")
@metrics.log_metrics()
def lambda_handler():
return True
"""
for name, value in dimensions.items():
self.add_dimension(name, value)
self.default_dimensions.update(**dimensions)
def clear_default_dimensions(self) -> None:
self.provider.default_dimensions.clear()
self.default_dimensions.clear()
def clear_metrics(self) -> None:
self.provider.clear_metrics()
# We now allow customers to bring their own instance
# of the AmazonCloudWatchEMFProvider provider
# So we need to define getter/setter for namespace and service properties
# To access these attributes on the provider instance.
@property
def namespace(self):
return self.provider.namespace
@namespace.setter
def namespace(self, namespace):
self.provider.namespace = namespace
@property
def service(self):
return self.provider.service
@service.setter
def service(self, service):
self.provider.service = service
# Maintenance: until v3, we can't afford to break customers.
# AmazonCloudWatchEMFProvider has the exact same functionality (non-singleton)
# so we simply alias. If a customer subclassed `EphemeralMetrics` and somehow relied on __name__
# we can quickly revert and duplicate code while using self.provider
EphemeralMetrics = AmazonCloudWatchEMFProvider