-
Notifications
You must be signed in to change notification settings - Fork 421
/
Copy pathfeature_flags.py
260 lines (212 loc) · 9.8 KB
/
feature_flags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import logging
from typing import Any, Dict, List, Optional, Union, cast
from . import schema
from .base import StoreProvider
from .exceptions import ConfigurationStoreError
logger = logging.getLogger(__name__)
class FeatureFlags:
def __init__(self, store: StoreProvider):
"""Evaluates whether feature flags should be enabled based on a given context.
It uses the provided store to fetch feature flag rules before evaluating them.
Examples
--------
```python
from aws_lambda_powertools.utilities.feature_flags import FeatureFlags, AppConfigStore
app_config = AppConfigStore(
environment="test",
application="powertools",
name="test_conf_name",
max_age=300,
envelope="features"
)
feature_flags: FeatureFlags = FeatureFlags(store=app_config)
```
Parameters
----------
store: StoreProvider
Store to use to fetch feature flag schema configuration.
"""
self._store = store
@staticmethod
def _match_by_action(action: str, condition_value: Any, context_value: Any) -> bool:
if not context_value:
return False
mapping_by_action = {
schema.RuleAction.EQUALS.value: lambda a, b: a == b,
schema.RuleAction.STARTSWITH.value: lambda a, b: a.startswith(b),
schema.RuleAction.ENDSWITH.value: lambda a, b: a.endswith(b),
schema.RuleAction.IN.value: lambda a, b: a in b,
schema.RuleAction.NOT_IN.value: lambda a, b: a not in b,
}
try:
func = mapping_by_action.get(action, lambda a, b: False)
return func(context_value, condition_value)
except Exception as exc:
logger.debug(f"caught exception while matching action: action={action}, exception={str(exc)}")
return False
def _evaluate_conditions(
self, rule_name: str, feature_name: str, rule: Dict[str, Any], context: Dict[str, Any]
) -> bool:
"""Evaluates whether context matches conditions, return False otherwise"""
rule_match_value = rule.get(schema.RULE_MATCH_VALUE)
conditions = cast(List[Dict], rule.get(schema.CONDITIONS_KEY))
if not conditions:
logger.debug(
f"rule did not match, no conditions to match, rule_name={rule_name}, rule_value={rule_match_value}, "
f"name={feature_name} "
)
return False
for condition in conditions:
context_value = context.get(str(condition.get(schema.CONDITION_KEY)))
cond_action = condition.get(schema.CONDITION_ACTION, "")
cond_value = condition.get(schema.CONDITION_VALUE)
if not self._match_by_action(action=cond_action, condition_value=cond_value, context_value=context_value):
logger.debug(
f"rule did not match action, rule_name={rule_name}, rule_value={rule_match_value}, "
f"name={feature_name}, context_value={str(context_value)} "
)
return False # context doesn't match condition
logger.debug(f"rule matched, rule_name={rule_name}, rule_value={rule_match_value}, name={feature_name}")
return True
def _evaluate_rules(
self, *, feature_name: str, context: Dict[str, Any], feat_default: bool, rules: Dict[str, Any]
) -> bool:
"""Evaluates whether context matches rules and conditions, otherwise return feature default"""
for rule_name, rule in rules.items():
rule_match_value = rule.get(schema.RULE_MATCH_VALUE)
# Context might contain PII data; do not log its value
logger.debug(f"Evaluating rule matching, rule={rule_name}, feature={feature_name}, default={feat_default}")
if self._evaluate_conditions(rule_name=rule_name, feature_name=feature_name, rule=rule, context=context):
return bool(rule_match_value)
# no rule matched, return default value of feature
logger.debug(f"no rule matched, returning feature default, default={feat_default}, name={feature_name}")
return feat_default
return False
def get_configuration(self) -> Union[Dict[str, Dict], Dict]:
"""Get validated feature flag schema from configured store.
Largely used to aid testing, since it's called by `evaluate` and `get_enabled_features` methods.
Raises
------
ConfigurationStoreError
Any propagated error from store
SchemaValidationError
When schema doesn't conform with feature flag schema
Returns
------
Dict[str, Dict]
parsed JSON dictionary
**Example**
```python
{
"premium_features": {
"default": False,
"rules": {
"customer tier equals premium": {
"when_match": True,
"conditions": [
{
"action": "EQUALS",
"key": "tier",
"value": "premium",
}
],
}
},
},
"feature_two": {
"default": False
}
}
```
"""
# parse result conf as JSON, keep in cache for max age defined in store
logger.debug(f"Fetching schema from registered store, store={self._store}")
config = self._store.get_configuration()
validator = schema.SchemaValidator(schema=config)
validator.validate()
return config
def evaluate(self, *, name: str, context: Optional[Dict[str, Any]] = None, default: bool) -> bool:
"""Evaluate whether a feature flag should be enabled according to stored schema and input context
**Logic when evaluating a feature flag**
1. Feature exists and a rule matches, returns when_match value
2. Feature exists but has either no rules or no match, return feature default value
3. Feature doesn't exist in stored schema, encountered an error when fetching -> return default value provided
Parameters
----------
name: str
feature name to evaluate
context: Optional[Dict[str, Any]]
Attributes that should be evaluated against the stored schema.
for example: `{"tenant_id": "X", "username": "Y", "region": "Z"}`
default: bool
default value if feature flag doesn't exist in the schema,
or there has been an error when fetching the configuration from the store
Returns
------
bool
whether feature should be enabled or not
Raises
------
SchemaValidationError
When schema doesn't conform with feature flag schema
"""
if context is None:
context = {}
try:
features = self.get_configuration()
except ConfigurationStoreError as err:
logger.debug(f"Failed to fetch feature flags from store, returning default provided, reason={err}")
return default
feature = features.get(name)
if feature is None:
logger.debug(f"Feature not found; returning default provided, name={name}, default={default}")
return default
rules = feature.get(schema.RULES_KEY)
feat_default = feature.get(schema.FEATURE_DEFAULT_VAL_KEY)
if not rules:
logger.debug(f"no rules found, returning feature default, name={name}, default={feat_default}")
return bool(feat_default)
logger.debug(f"looking for rule match, name={name}, default={feat_default}")
return self._evaluate_rules(feature_name=name, context=context, feat_default=bool(feat_default), rules=rules)
def get_enabled_features(self, *, context: Optional[Dict[str, Any]] = None) -> List[str]:
"""Get all enabled feature flags while also taking into account context
(when a feature has defined rules)
Parameters
----------
context: Optional[Dict[str, Any]]
dict of attributes that you would like to match the rules
against, can be `{'tenant_id: 'X', 'username':' 'Y', 'region': 'Z'}` etc.
Returns
----------
List[str]
list of all feature names that either matches context or have True as default
**Example**
```python
["premium_features", "my_feature_two", "always_true_feature"]
```
Raises
------
SchemaValidationError
When schema doesn't conform with feature flag schema
"""
if context is None:
context = {}
features_enabled: List[str] = []
try:
features: Dict[str, Any] = self.get_configuration()
except ConfigurationStoreError as err:
logger.debug(f"Failed to fetch feature flags from store, returning empty list, reason={err}")
return features_enabled
logger.debug("Evaluating all features")
for name, feature in features.items():
rules = feature.get(schema.RULES_KEY, {})
feature_default_value = feature.get(schema.FEATURE_DEFAULT_VAL_KEY)
if feature_default_value and not rules:
logger.debug(f"feature is enabled by default and has no defined rules, name={name}")
features_enabled.append(name)
elif self._evaluate_rules(
feature_name=name, context=context, feat_default=feature_default_value, rules=rules
):
logger.debug(f"feature's calculated value is True, name={name}")
features_enabled.append(name)
return features_enabled