diff --git a/README.rst b/README.rst index bfc339926d..307aa1301e 100644 --- a/README.rst +++ b/README.rst @@ -356,7 +356,9 @@ MXNet SageMaker Estimators By using MXNet SageMaker ``Estimators``, you can train and host MXNet models on Amazon SageMaker. -Supported versions of MXNet: ``1.2.1``, ``1.1.0``, ``1.0.0``, ``0.12.1``. +Supported versions of MXNet: ``1.3.0``, ``1.2.1``, ``1.1.0``, ``1.0.0``, ``0.12.1``. + +Supported versions of MXNet for Elastic Inference: ``1.3.0`` We recommend that you use the latest supported version, because that's where we focus most of our development efforts. @@ -372,6 +374,8 @@ By using TensorFlow SageMaker ``Estimators``, you can train and host TensorFlow Supported versions of TensorFlow: ``1.4.1``, ``1.5.0``, ``1.6.0``, ``1.7.0``, ``1.8.0``, ``1.9.0``, ``1.10.0``, ``1.11.0``. +Supported versions of TensorFlow for Elastic Inference: ``1.11.0``. + We recommend that you use the latest supported version, because that's where we focus most of our development efforts. For more information, see `TensorFlow SageMaker Estimators and Models`_. diff --git a/src/sagemaker/mxnet/README.rst b/src/sagemaker/mxnet/README.rst index 1d5e200bac..00926965a6 100644 --- a/src/sagemaker/mxnet/README.rst +++ b/src/sagemaker/mxnet/README.rst @@ -6,6 +6,8 @@ With MXNet Estimators, you can train and host MXNet models on Amazon SageMaker. Supported versions of MXNet: ``1.3.0``, ``1.2.1``, ``1.1.0``, ``1.0.0``, ``0.12.1``. +Supported versions of MXNet for Elastic Inference: ``1.3.0``. + Training with MXNet ~~~~~~~~~~~~~~~~~~~ @@ -480,6 +482,14 @@ After calling ``fit``, you can call ``deploy`` on an ``MXNet`` Estimator to crea You use the SageMaker MXNet model server to host your MXNet model when you call ``deploy`` on an ``MXNet`` Estimator. The model server runs inside a SageMaker Endpoint, which your call to ``deploy`` creates. You can access the name of the Endpoint by the ``name`` property on the returned ``Predictor``. +MXNet on SageMaker has support for `Elastic Inference `_, which allows for inference acceleration to a hosted endpoint for a fraction of the cost of using a full GPU instance. In order to attach an Elastic Inference accelerator to your endpoint provide the accelerator type to ``accelerator_type`` to your ``deploy`` call. + +.. code:: python + + predictor = mxnet_estimator.deploy(instance_type='ml.m4.xlarge', + initial_instance_count=1, + accelerator_type='ml.eia1.medium') + The SageMaker MXNet Model Server ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/src/sagemaker/tensorflow/README.rst b/src/sagemaker/tensorflow/README.rst index 4693fdbab1..c26914bbec 100644 --- a/src/sagemaker/tensorflow/README.rst +++ b/src/sagemaker/tensorflow/README.rst @@ -20,6 +20,8 @@ Documentation of the previous Legacy Mode versions: `1.4.1 `_. | +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ +Supported versions of TensorFlow for Elastic Inference: ``1.11.0``. + Training with TensorFlow ~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/src/sagemaker/tensorflow/deploying_tensorflow_serving.rst b/src/sagemaker/tensorflow/deploying_tensorflow_serving.rst index 30de627a37..b2dc9d32fa 100644 --- a/src/sagemaker/tensorflow/deploying_tensorflow_serving.rst +++ b/src/sagemaker/tensorflow/deploying_tensorflow_serving.rst @@ -34,6 +34,15 @@ estimator object to create a SageMaker Endpoint: The code block above deploys a SageMaker Endpoint with one instance of the type 'ml.c5.xlarge'. +TensorFlow serving on SageMaker has support for `Elastic Inference `_, which allows for inference acceleration to a hosted endpoint for a fraction of the cost of using a full GPU instance. In order to attach an Elastic Inference accelerator to your endpoint provide the accelerator type to ``accelerator_type`` to your ``deploy`` call. + +.. code:: python + + predictor = estimator.deploy(initial_instance_count=1, + instance_type='ml.c5.xlarge', + accelerator_type='ml.eia1.medium' + endpoint_type='tensorflow-serving-elastic-inference') + What happens when deploy is called ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^