diff --git a/tests/integ/sagemaker/serve/test_serve_mlflow_pytorch_flavor_happy.py b/tests/integ/sagemaker/serve/test_serve_mlflow_pytorch_flavor_happy.py index 0b98c14d08..e7ebd9c5bf 100644 --- a/tests/integ/sagemaker/serve/test_serve_mlflow_pytorch_flavor_happy.py +++ b/tests/integ/sagemaker/serve/test_serve_mlflow_pytorch_flavor_happy.py @@ -28,7 +28,7 @@ PYTORCH_SQUEEZENET_RESOURCE_DIR, PYTORCH_SQUEEZENET_MLFLOW_RESOURCE_DIR, SERVE_SAGEMAKER_ENDPOINT_TIMEOUT, - SERVE_LOCAL_CONTAINER_TIMEOUT, + # SERVE_LOCAL_CONTAINER_TIMEOUT, PYTHON_VERSION_IS_NOT_310, ) from tests.integ.timeout import timeout @@ -128,36 +128,36 @@ def model_builder(request): return request.getfixturevalue(request.param) -@pytest.mark.skipif( - PYTHON_VERSION_IS_NOT_310, - reason="The goal of these test are to test the serving components of our feature", -) -@pytest.mark.flaky(reruns=3, reruns_delay=2) -@pytest.mark.parametrize("model_builder", ["model_builder_local_builder"], indirect=True) -def test_happy_mlflow_pytorch_local_container_with_torch_serve( - sagemaker_session, model_builder, test_image -): - logger.info("Running in LOCAL_CONTAINER mode...") - caught_ex = None - - model = model_builder.build(mode=Mode.LOCAL_CONTAINER, sagemaker_session=sagemaker_session) - - with timeout(minutes=SERVE_LOCAL_CONTAINER_TIMEOUT): - try: - logger.info("Deploying and predicting in LOCAL_CONTAINER mode...") - predictor = model.deploy() - logger.info("Local container successfully deployed.") - predictor.predict(test_image) - except Exception as e: - logger.exception("test failed") - caught_ex = e - finally: - if model.modes[str(Mode.LOCAL_CONTAINER)].container: - model.modes[str(Mode.LOCAL_CONTAINER)].container.kill() - if caught_ex: - assert ( - False - ), f"{caught_ex} was thrown when running pytorch squeezenet local container test" +# @pytest.mark.skipif( +# PYTHON_VERSION_IS_NOT_310, +# reason="The goal of these test are to test the serving components of our feature", +# ) +# @pytest.mark.flaky(reruns=3, reruns_delay=2) +# @pytest.mark.parametrize("model_builder", ["model_builder_local_builder"], indirect=True) +# def test_happy_mlflow_pytorch_local_container_with_torch_serve( +# sagemaker_session, model_builder, test_image +# ): +# logger.info("Running in LOCAL_CONTAINER mode...") +# caught_ex = None +# +# model = model_builder.build(mode=Mode.LOCAL_CONTAINER, sagemaker_session=sagemaker_session) +# +# with timeout(minutes=SERVE_LOCAL_CONTAINER_TIMEOUT): +# try: +# logger.info("Deploying and predicting in LOCAL_CONTAINER mode...") +# predictor = model.deploy() +# logger.info("Local container successfully deployed.") +# predictor.predict(test_image) +# except Exception as e: +# logger.exception("test failed") +# caught_ex = e +# finally: +# if model.modes[str(Mode.LOCAL_CONTAINER)].container: +# model.modes[str(Mode.LOCAL_CONTAINER)].container.kill() +# if caught_ex: +# assert ( +# False +# ), f"{caught_ex} was thrown when running pytorch squeezenet local container test" @pytest.mark.skipif( diff --git a/tests/integ/sagemaker/serve/test_serve_mlflow_xgboost_flavor_happy.py b/tests/integ/sagemaker/serve/test_serve_mlflow_xgboost_flavor_happy.py index a8c8574319..5a73942afe 100644 --- a/tests/integ/sagemaker/serve/test_serve_mlflow_xgboost_flavor_happy.py +++ b/tests/integ/sagemaker/serve/test_serve_mlflow_xgboost_flavor_happy.py @@ -25,7 +25,7 @@ from tests.integ.sagemaker.serve.constants import ( XGBOOST_MLFLOW_RESOURCE_DIR, SERVE_SAGEMAKER_ENDPOINT_TIMEOUT, - SERVE_LOCAL_CONTAINER_TIMEOUT, + # SERVE_LOCAL_CONTAINER_TIMEOUT, PYTHON_VERSION_IS_NOT_310, ) from tests.integ.timeout import timeout @@ -108,37 +108,37 @@ def model_builder(request): return request.getfixturevalue(request.param) -@pytest.mark.skipif( - PYTHON_VERSION_IS_NOT_310, - reason="The goal of these test are to test the serving components of our feature", -) -@pytest.mark.flaky(reruns=3, reruns_delay=2) -@pytest.mark.parametrize("model_builder", ["model_builder_local_builder"], indirect=True) -def test_happy_mlflow_xgboost_local_container_with_torch_serve( - sagemaker_session, model_builder, test_data -): - logger.info("Running in LOCAL_CONTAINER mode...") - caught_ex = None - - model = model_builder.build(mode=Mode.LOCAL_CONTAINER, sagemaker_session=sagemaker_session) - test_x, _ = test_data - - with timeout(minutes=SERVE_LOCAL_CONTAINER_TIMEOUT): - try: - logger.info("Deploying and predicting in LOCAL_CONTAINER mode...") - predictor = model.deploy() - logger.info("Local container successfully deployed.") - predictor.predict(test_x) - except Exception as e: - logger.exception("test failed") - caught_ex = e - finally: - if model.modes[str(Mode.LOCAL_CONTAINER)].container: - model.modes[str(Mode.LOCAL_CONTAINER)].container.kill() - if caught_ex: - assert ( - False - ), f"{caught_ex} was thrown when running pytorch squeezenet local container test" +# @pytest.mark.skipif( +# PYTHON_VERSION_IS_NOT_310, +# reason="The goal of these test are to test the serving components of our feature", +# ) +# @pytest.mark.flaky(reruns=3, reruns_delay=2) +# @pytest.mark.parametrize("model_builder", ["model_builder_local_builder"], indirect=True) +# def test_happy_mlflow_xgboost_local_container_with_torch_serve( +# sagemaker_session, model_builder, test_data +# ): +# logger.info("Running in LOCAL_CONTAINER mode...") +# caught_ex = None +# +# model = model_builder.build(mode=Mode.LOCAL_CONTAINER, sagemaker_session=sagemaker_session) +# test_x, _ = test_data +# +# with timeout(minutes=SERVE_LOCAL_CONTAINER_TIMEOUT): +# try: +# logger.info("Deploying and predicting in LOCAL_CONTAINER mode...") +# predictor = model.deploy() +# logger.info("Local container successfully deployed.") +# predictor.predict(test_x) +# except Exception as e: +# logger.exception("test failed") +# caught_ex = e +# finally: +# if model.modes[str(Mode.LOCAL_CONTAINER)].container: +# model.modes[str(Mode.LOCAL_CONTAINER)].container.kill() +# if caught_ex: +# assert ( +# False +# ), f"{caught_ex} was thrown when running pytorch squeezenet local container test" @pytest.mark.skipif(