diff --git a/src/sagemaker/tensorflow/README.rst b/src/sagemaker/tensorflow/README.rst index 88b08ed54b..b7587155b9 100644 --- a/src/sagemaker/tensorflow/README.rst +++ b/src/sagemaker/tensorflow/README.rst @@ -819,7 +819,10 @@ If your TFRecords are compressed, you can train on Gzipped TF Records by passing .. code:: python - tf_estimator.fit('s3://bucket/path/to/training/data', compression='Gzip') + from sagemaker.session import s3_input + + train_s3_input = s3_input('s3://bucket/path/to/training/data', compression='Gzip') + tf_estimator.fit(train_s3_input) You can learn more about ``PipeModeDataset`` in the sagemaker-tensorflow-extensions repository: https://github.com/aws/sagemaker-tensorflow-extensions