We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Please fill out the form below.
If I try to call estimator.fit without hyperparameters, I get an error. I shouldn't need to specify any hyperparameters.
From a notebook call
import sagemaker role = sagemaker.get_execution_role() instance_type = 'local' estimator = sagemaker.estimator.Estimator(role=role, train_instance_count=1, train_instance_type=instance_type, image_name='simpleexample/cpu', hyperparameters={}, ) estimator.fit({})
And I get
INFO:sagemaker:Creating training-job with name: cpu-2018-09-26-01-22-42-326 --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-13-98552d1fe99a> in <module>() 7 ) 8 ----> 9 estimator.fit({}) ~/miniconda3/envs/conda_python3/lib/python3.6/site-packages/sagemaker/estimator.py in fit(self, inputs, wait, logs, job_name) 176 self._prepare_for_training(job_name=job_name) 177 --> 178 self.latest_training_job = _TrainingJob.start_new(self, inputs) 179 if wait: 180 self.latest_training_job.wait(logs=logs) ~/miniconda3/envs/conda_python3/lib/python3.6/site-packages/sagemaker/estimator.py in start_new(cls, estimator, inputs) 361 job_name=estimator._current_job_name, output_config=config['output_config'], 362 resource_config=config['resource_config'], hyperparameters=hyperparameters, --> 363 stop_condition=config['stop_condition'], tags=estimator.tags) 364 365 return cls(estimator.sagemaker_session, estimator._current_job_name) ~/miniconda3/envs/conda_python3/lib/python3.6/site-packages/sagemaker/session.py in train(self, image, input_mode, input_config, role, job_name, output_config, resource_config, hyperparameters, stop_condition, tags) 262 LOGGER.info('Creating training-job with name: {}'.format(job_name)) 263 LOGGER.debug('train request: {}'.format(json.dumps(train_request, indent=4))) --> 264 self.sagemaker_client.create_training_job(**train_request) 265 266 def tune(self, job_name, strategy, objective_type, objective_metric_name, TypeError: create_training_job() missing 1 required positional argument: 'HyperParameters'
The text was updated successfully, but these errors were encountered:
Fixed in #375
Sorry, something went wrong.
Seems that the fix has been merged in.
No branches or pull requests
Please fill out the form below.
System Information
Describe the problem
If I try to call estimator.fit without hyperparameters, I get an error. I shouldn't need to specify any hyperparameters.
Minimal repro / logs
From a notebook call
And I get
The text was updated successfully, but these errors were encountered: