Skip to content

Commit fcab945

Browse files
authored
doc: Update container version for SKLearn (#3665)
1 parent 1eb834e commit fcab945

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

doc/frameworks/sklearn/using_sklearn.rst

+5-5
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ With Scikit-learn Estimators, you can train and host Scikit-learn models on Amaz
77
For information about supported versions of Scikit-learn, see the `AWS documentation <https://docs.aws.amazon.com/sagemaker/latest/dg/sklearn.html>`__.
88
We recommend that you use the latest supported version because that's where we focus most of our development efforts.
99

10-
For more information about the framework, see the `Sciket-Learn <https://github.com/scikit-learn/scikit-learn>`_ repository.
10+
For more information about the framework, see the `Scikit-Learn <https://github.com/scikit-learn/scikit-learn>`_ repository.
1111
For general information about using the SageMaker Python SDK, see :ref:`overview:Using the SageMaker Python SDK`.
1212

1313
.. contents::
@@ -31,7 +31,7 @@ To train a Scikit-learn model by using the SageMaker Python SDK:
3131
Prepare a Scikit-learn Training Script
3232
======================================
3333

34-
Your Scikit-learn training script must be a Python 3.6 compatible source file.
34+
Your Scikit-learn training script must be a Python 3.7 compatible source file.
3535

3636
The training script is similar to a training script you might run outside of SageMaker, but you
3737
can access useful properties about the training environment through various environment variables.
@@ -140,7 +140,7 @@ directories ('train' and 'test').
140140
141141
sklearn_estimator = SKLearn('sklearn-train.py',
142142
instance_type='ml.m4.xlarge',
143-
framework_version='0.20.0',
143+
framework_version='1.0-1',
144144
hyperparameters = {'epochs': 20, 'batch-size': 64, 'learning-rate': 0.1})
145145
sklearn_estimator.fit({'train': 's3://my-data-bucket/path/to/my/training/data',
146146
'test': 's3://my-data-bucket/path/to/my/test/data'})
@@ -204,7 +204,7 @@ operation.
204204
# Train my estimator
205205
sklearn_estimator = SKLearn(entry_point='train_and_deploy.py',
206206
instance_type='ml.m4.xlarge',
207-
framework_version='0.20.0')
207+
framework_version='1.0-1')
208208
sklearn_estimator.fit('s3://my_bucket/my_training_data/')
209209
210210
# Deploy my estimator to a SageMaker Endpoint and get a Predictor
@@ -478,7 +478,7 @@ The following code sample shows how to do this, using the ``SKLearnModel`` class
478478
sklearn_model = SKLearnModel(model_data="s3://bucket/model.tar.gz",
479479
role="SageMakerRole",
480480
entry_point="transform_script.py",
481-
framework_version="0.20.0")
481+
framework_version="1.0-1")
482482
483483
predictor = sklearn_model.deploy(instance_type="ml.c4.xlarge", initial_instance_count=1)
484484

0 commit comments

Comments
 (0)