@@ -37,83 +37,83 @@ class FactorizationMachines(AmazonAlgorithmEstimatorBase):
37
37
sparse datasets economically.
38
38
"""
39
39
40
- repo_name = "factorization-machines"
41
- repo_version = 1
40
+ repo_name : str = "factorization-machines"
41
+ repo_version : str = "1"
42
42
43
- num_factors = hp ("num_factors" , gt (0 ), "An integer greater than zero" , int )
44
- predictor_type = hp (
43
+ num_factors : hp = hp ("num_factors" , gt (0 ), "An integer greater than zero" , int )
44
+ predictor_type : hp = hp (
45
45
"predictor_type" ,
46
46
isin ("binary_classifier" , "regressor" ),
47
47
'Value "binary_classifier" or "regressor"' ,
48
48
str ,
49
49
)
50
- epochs = hp ("epochs" , gt (0 ), "An integer greater than 0" , int )
51
- clip_gradient = hp ("clip_gradient" , (), "A float value" , float )
52
- eps = hp ("eps" , (), "A float value" , float )
53
- rescale_grad = hp ("rescale_grad" , (), "A float value" , float )
54
- bias_lr = hp ("bias_lr" , ge (0 ), "A non-negative float" , float )
55
- linear_lr = hp ("linear_lr" , ge (0 ), "A non-negative float" , float )
56
- factors_lr = hp ("factors_lr" , ge (0 ), "A non-negative float" , float )
57
- bias_wd = hp ("bias_wd" , ge (0 ), "A non-negative float" , float )
58
- linear_wd = hp ("linear_wd" , ge (0 ), "A non-negative float" , float )
59
- factors_wd = hp ("factors_wd" , ge (0 ), "A non-negative float" , float )
60
- bias_init_method = hp (
50
+ epochs : hp = hp ("epochs" , gt (0 ), "An integer greater than 0" , int )
51
+ clip_gradient : hp = hp ("clip_gradient" , (), "A float value" , float )
52
+ eps : hp = hp ("eps" , (), "A float value" , float )
53
+ rescale_grad : hp = hp ("rescale_grad" , (), "A float value" , float )
54
+ bias_lr : hp = hp ("bias_lr" , ge (0 ), "A non-negative float" , float )
55
+ linear_lr : hp = hp ("linear_lr" , ge (0 ), "A non-negative float" , float )
56
+ factors_lr : hp = hp ("factors_lr" , ge (0 ), "A non-negative float" , float )
57
+ bias_wd : hp = hp ("bias_wd" , ge (0 ), "A non-negative float" , float )
58
+ linear_wd : hp = hp ("linear_wd" , ge (0 ), "A non-negative float" , float )
59
+ factors_wd : hp = hp ("factors_wd" , ge (0 ), "A non-negative float" , float )
60
+ bias_init_method : hp = hp (
61
61
"bias_init_method" ,
62
62
isin ("normal" , "uniform" , "constant" ),
63
63
'Value "normal", "uniform" or "constant"' ,
64
64
str ,
65
65
)
66
- bias_init_scale = hp ("bias_init_scale" , ge (0 ), "A non-negative float" , float )
67
- bias_init_sigma = hp ("bias_init_sigma" , ge (0 ), "A non-negative float" , float )
68
- bias_init_value = hp ("bias_init_value" , (), "A float value" , float )
69
- linear_init_method = hp (
66
+ bias_init_scale : hp = hp ("bias_init_scale" , ge (0 ), "A non-negative float" , float )
67
+ bias_init_sigma : hp = hp ("bias_init_sigma" , ge (0 ), "A non-negative float" , float )
68
+ bias_init_value : hp = hp ("bias_init_value" , (), "A float value" , float )
69
+ linear_init_method : hp = hp (
70
70
"linear_init_method" ,
71
71
isin ("normal" , "uniform" , "constant" ),
72
72
'Value "normal", "uniform" or "constant"' ,
73
73
str ,
74
74
)
75
- linear_init_scale = hp ("linear_init_scale" , ge (0 ), "A non-negative float" , float )
76
- linear_init_sigma = hp ("linear_init_sigma" , ge (0 ), "A non-negative float" , float )
77
- linear_init_value = hp ("linear_init_value" , (), "A float value" , float )
78
- factors_init_method = hp (
75
+ linear_init_scale : hp = hp ("linear_init_scale" , ge (0 ), "A non-negative float" , float )
76
+ linear_init_sigma : hp = hp ("linear_init_sigma" , ge (0 ), "A non-negative float" , float )
77
+ linear_init_value : hp = hp ("linear_init_value" , (), "A float value" , float )
78
+ factors_init_method : hp = hp (
79
79
"factors_init_method" ,
80
80
isin ("normal" , "uniform" , "constant" ),
81
81
'Value "normal", "uniform" or "constant"' ,
82
82
str ,
83
83
)
84
- factors_init_scale = hp ("factors_init_scale" , ge (0 ), "A non-negative float" , float )
85
- factors_init_sigma = hp ("factors_init_sigma" , ge (0 ), "A non-negative float" , float )
86
- factors_init_value = hp ("factors_init_value" , (), "A float value" , float )
84
+ factors_init_scale : hp = hp ("factors_init_scale" , ge (0 ), "A non-negative float" , float )
85
+ factors_init_sigma : hp = hp ("factors_init_sigma" , ge (0 ), "A non-negative float" , float )
86
+ factors_init_value : hp = hp ("factors_init_value" , (), "A float value" , float )
87
87
88
88
def __init__ (
89
89
self ,
90
- role ,
91
- instance_count = None ,
92
- instance_type = None ,
93
- num_factors = None ,
94
- predictor_type = None ,
95
- epochs = None ,
96
- clip_gradient = None ,
97
- eps = None ,
98
- rescale_grad = None ,
99
- bias_lr = None ,
100
- linear_lr = None ,
101
- factors_lr = None ,
102
- bias_wd = None ,
103
- linear_wd = None ,
104
- factors_wd = None ,
105
- bias_init_method = None ,
106
- bias_init_scale = None ,
107
- bias_init_sigma = None ,
108
- bias_init_value = None ,
109
- linear_init_method = None ,
110
- linear_init_scale = None ,
111
- linear_init_sigma = None ,
112
- linear_init_value = None ,
113
- factors_init_method = None ,
114
- factors_init_scale = None ,
115
- factors_init_sigma = None ,
116
- factors_init_value = None ,
90
+ role : str ,
91
+ instance_count : Optional [ Union [ int , PipelineVariable ]] = None ,
92
+ instance_type : Optional [ Union [ str , PipelineVariable ]] = None ,
93
+ num_factors : Optional [ int ] = None ,
94
+ predictor_type : Optional [ str ] = None ,
95
+ epochs : Optional [ int ] = None ,
96
+ clip_gradient : Optional [ float ] = None ,
97
+ eps : Optional [ float ] = None ,
98
+ rescale_grad : Optional [ float ] = None ,
99
+ bias_lr : Optional [ float ] = None ,
100
+ linear_lr : Optional [ float ] = None ,
101
+ factors_lr : Optional [ float ] = None ,
102
+ bias_wd : Optional [ float ] = None ,
103
+ linear_wd : Optional [ float ] = None ,
104
+ factors_wd : Optional [ float ] = None ,
105
+ bias_init_method : Optional [ str ] = None ,
106
+ bias_init_scale : Optional [ float ] = None ,
107
+ bias_init_sigma : Optional [ float ] = None ,
108
+ bias_init_value : Optional [ float ] = None ,
109
+ linear_init_method : Optional [ str ] = None ,
110
+ linear_init_scale : Optional [ float ] = None ,
111
+ linear_init_sigma : Optional [ float ] = None ,
112
+ linear_init_value : Optional [ float ] = None ,
113
+ factors_init_method : Optional [ str ] = None ,
114
+ factors_init_scale : Optional [ float ] = None ,
115
+ factors_init_sigma : Optional [ float ] = None ,
116
+ factors_init_value : Optional [ float ] = None ,
117
117
** kwargs
118
118
):
119
119
"""Factorization Machines is :class:`Estimator` for general-purpose supervised learning.
@@ -160,9 +160,9 @@ def __init__(
160
160
endpoints use this role to access training data and model
161
161
artifacts. After the endpoint is created, the inference code
162
162
might use the IAM role, if accessing AWS resource.
163
- instance_count (int): Number of Amazon EC2 instances to use
163
+ instance_count (int or PipelineVariable ): Number of Amazon EC2 instances to use
164
164
for training.
165
- instance_type (str): Type of EC2 instance to use for training,
165
+ instance_type (str or PipelineVariable ): Type of EC2 instance to use for training,
166
166
for example, 'ml.c4.xlarge'.
167
167
num_factors (int): Dimensionality of factorization.
168
168
predictor_type (str): Type of predictor 'binary_classifier' or
@@ -183,7 +183,7 @@ def __init__(
183
183
linear_wd (float): Non-negative weight decay for linear terms.
184
184
factors_wd (float): Non-negative weight decay for factorization
185
185
terms.
186
- bias_init_method (string ): Initialization method for the bias term:
186
+ bias_init_method (str ): Initialization method for the bias term:
187
187
'normal', 'uniform' or 'constant'.
188
188
bias_init_scale (float): Non-negative range for initialization of
189
189
the bias term that takes effect when bias_init_method parameter
@@ -193,7 +193,7 @@ def __init__(
193
193
bias_init_method parameter is 'normal'.
194
194
bias_init_value (float): Initial value of the bias term that takes
195
195
effect when bias_init_method parameter is 'constant'.
196
- linear_init_method (string ): Initialization method for linear term:
196
+ linear_init_method (str ): Initialization method for linear term:
197
197
'normal', 'uniform' or 'constant'.
198
198
linear_init_scale (float): Non-negative range for initialization of
199
199
linear terms that takes effect when linear_init_method parameter
@@ -203,7 +203,7 @@ def __init__(
203
203
linear_init_method parameter is 'normal'.
204
204
linear_init_value (float): Initial value of linear terms that takes
205
205
effect when linear_init_method parameter is 'constant'.
206
- factors_init_method (string ): Initialization method for
206
+ factors_init_method (str ): Initialization method for
207
207
factorization term: 'normal', 'uniform' or 'constant'.
208
208
factors_init_scale (float): Non-negative range for initialization of
209
209
factorization terms that takes effect when factors_init_method
0 commit comments