@@ -2156,7 +2156,7 @@ def create_model_from_job(
2156
2156
training_job_name ,
2157
2157
name = None ,
2158
2158
role = None ,
2159
- primary_container_image_uri = None ,
2159
+ image_uri = None ,
2160
2160
model_data_url = None ,
2161
2161
env = None ,
2162
2162
vpc_config_override = vpc_utils .VPC_CONFIG_DEFAULT ,
@@ -2171,7 +2171,7 @@ def create_model_from_job(
2171
2171
role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``, specified either
2172
2172
by an IAM role name or role ARN. If None, the ``RoleArn`` from the SageMaker
2173
2173
Training Job will be used.
2174
- primary_container_image_uri (str): The Docker image URI (default: None). If None, it
2174
+ image_uri (str): The Docker image URI (default: None). If None, it
2175
2175
defaults to the training image URI from ``training_job_name``.
2176
2176
model_data_url (str): S3 location of the model data (default: None). If None, defaults
2177
2177
to the ``ModelS3Artifacts`` of ``training_job_name``.
@@ -2194,7 +2194,7 @@ def create_model_from_job(
2194
2194
role = role or training_job ["RoleArn" ]
2195
2195
env = env or {}
2196
2196
primary_container = container_def (
2197
- primary_container_image_uri or training_job ["AlgorithmSpecification" ]["TrainingImage" ],
2197
+ image_uri or training_job ["AlgorithmSpecification" ]["TrainingImage" ],
2198
2198
model_data_url = model_data_url or training_job ["ModelArtifacts" ]["S3ModelArtifacts" ],
2199
2199
env = env ,
2200
2200
)
@@ -2700,7 +2700,7 @@ def endpoint_from_job(
2700
2700
job_name ,
2701
2701
initial_instance_count ,
2702
2702
instance_type ,
2703
- deployment_image_uri = None ,
2703
+ image_uri = None ,
2704
2704
name = None ,
2705
2705
role = None ,
2706
2706
wait = True ,
@@ -2725,7 +2725,7 @@ def endpoint_from_job(
2725
2725
autoscaling.
2726
2726
instance_type (str): Type of EC2 instance to deploy to an endpoint for prediction,
2727
2727
for example, 'ml.c4.xlarge'.
2728
- deployment_image_uri (str): The Docker image which defines the inference code to be used
2728
+ image_uri (str): The Docker image which defines the inference code to be used
2729
2729
as the entry point for accepting prediction requests. If not specified, uses the
2730
2730
image used for the training job.
2731
2731
name (str): Name of the ``Endpoint`` to create. If not specified, uses the training job
@@ -2755,16 +2755,14 @@ def endpoint_from_job(
2755
2755
"""
2756
2756
job_desc = self .sagemaker_client .describe_training_job (TrainingJobName = job_name )
2757
2757
output_url = job_desc ["ModelArtifacts" ]["S3ModelArtifacts" ]
2758
- deployment_image_uri = (
2759
- deployment_image_uri or job_desc ["AlgorithmSpecification" ]["TrainingImage" ]
2760
- )
2758
+ image_uri = image_uri or job_desc ["AlgorithmSpecification" ]["TrainingImage" ]
2761
2759
role = role or job_desc ["RoleArn" ]
2762
2760
name = name or job_name
2763
2761
vpc_config_override = _vpc_config_from_training_job (job_desc , vpc_config_override )
2764
2762
2765
2763
return self .endpoint_from_model_data (
2766
2764
model_s3_location = output_url ,
2767
- deployment_image_uri = deployment_image_uri ,
2765
+ image_uri = image_uri ,
2768
2766
initial_instance_count = initial_instance_count ,
2769
2767
instance_type = instance_type ,
2770
2768
name = name ,
0 commit comments