@@ -182,16 +182,21 @@ def __init__(
182
182
183
183
.. note::
184
184
185
- When using an ML instance with `NVMe SSD volumes
186
- <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes>`_,
185
+ When you use an ML instance with `NVMe SSD volumes
186
+ <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes>`_
187
+ such as ``ml.p4d``, ``ml.g4dn``, and ``ml.g5``,
188
+ do not include this parameter in the estimator configuration.
189
+ If you use one of those ML instance types,
187
190
SageMaker doesn't provision Amazon EBS General Purpose SSD
188
- (gp2) storage.
189
- Available storage is fixed to the NVMe-type instance's storage
191
+ (gp2) storage nor take this parameter to adjust the NVMe instance storage .
192
+ Available storage is fixed to the NVMe instance storage
190
193
capacity. SageMaker configures storage paths for training
191
194
datasets, checkpoints, model artifacts, and outputs to use the
192
- entire capacity of the instance storage. For example, ML
193
- instance families with the NVMe-type instance storage include
194
- ``ml.p4d``, ``ml.g4dn``, and ``ml.g5``.
195
+ entire capacity of the instance storage.
196
+
197
+ Note that if you include this parameter and specify a number that
198
+ exceeds the size of the NVMe volume attached to the instance type,
199
+ SageMaker returns an ``Invalid VolumeSizeInGB`` error.
195
200
196
201
To look up instance types and their instance storage types
197
202
and volumes, see `Amazon EC2 Instance Types
@@ -2264,7 +2269,7 @@ def __init__(
2264
2269
instance_count (int): Number of Amazon EC2 instances to use
2265
2270
for training. Required if instance_groups is not set.
2266
2271
instance_type (str): Type of EC2 instance to use for training,
2267
- for example, 'ml.c4.xlarge'. Required if instance_groups is
2272
+ for example, `` 'ml.c4.xlarge'`` . Required if instance_groups is
2268
2273
not set.
2269
2274
volume_size (int): Size in GB of the storage volume to use for
2270
2275
storing input and output data during training (default: 30).
@@ -2282,16 +2287,21 @@ def __init__(
2282
2287
2283
2288
.. note::
2284
2289
2285
- When using an ML instance with `NVMe SSD volumes
2286
- <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes>`_,
2290
+ When you use an ML instance with `NVMe SSD volumes
2291
+ <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes>`_
2292
+ such as ``ml.p4d``, ``ml.g4dn``, and ``ml.g5``,
2293
+ do not include this parameter in the estimator configuration.
2294
+ If you use one of those ML instance types,
2287
2295
SageMaker doesn't provision Amazon EBS General Purpose SSD
2288
- (gp2) storage.
2289
- Available storage is fixed to the NVMe-type instance's storage
2296
+ (gp2) storage nor take this parameter to adjust the NVMe instance storage .
2297
+ Available storage is fixed to the NVMe instance storage
2290
2298
capacity. SageMaker configures storage paths for training
2291
2299
datasets, checkpoints, model artifacts, and outputs to use the
2292
- entire capacity of the instance storage. For example, ML
2293
- instance families with the NVMe-type instance storage include
2294
- ``ml.p4d``, ``ml.g4dn``, and ``ml.g5``.
2300
+ entire capacity of the instance storage.
2301
+
2302
+ Note that if you include this parameter and specify a number that
2303
+ exceeds the size of the NVMe volume attached to the instance type,
2304
+ SageMaker returns an ``Invalid VolumeSizeInGB`` error.
2295
2305
2296
2306
To look up instance types and their instance storage types
2297
2307
and volumes, see `Amazon EC2 Instance Types
0 commit comments