|
13 | 13 | import numpy as np
|
14 | 14 | import tempfile
|
15 | 15 | import pytest
|
| 16 | +import itertools |
| 17 | +from scipy.sparse import coo_matrix |
16 | 18 | from sagemaker.amazon.common import (record_deserializer, write_numpy_to_dense_tensor, _read_recordio,
|
17 |
| - numpy_to_record_serializer) |
| 19 | + numpy_to_record_serializer, write_numpy_to_sparse_tensor) |
18 | 20 | from sagemaker.amazon.record_pb2 import Record
|
19 | 21 |
|
20 | 22 |
|
@@ -131,3 +133,183 @@ def test_invalid_label():
|
131 | 133 | with tempfile.TemporaryFile() as f:
|
132 | 134 | with pytest.raises(ValueError):
|
133 | 135 | write_numpy_to_dense_tensor(f, array, label_data)
|
| 136 | + |
| 137 | + |
| 138 | +def test_dense_float_write_numpy_to_sparse_tensor(): |
| 139 | + array_data = [[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]] |
| 140 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 141 | + array = coo_matrix(np.array(array_data)) |
| 142 | + with tempfile.TemporaryFile() as f: |
| 143 | + write_numpy_to_sparse_tensor(f, array) |
| 144 | + f.seek(0) |
| 145 | + for record_data, expected_data, expected_keys in zip(_read_recordio(f), array_data, keys_data): |
| 146 | + record = Record() |
| 147 | + record.ParseFromString(record_data) |
| 148 | + assert record.features["values"].float64_tensor.values == expected_data |
| 149 | + assert record.features["values"].float64_tensor.keys == expected_keys |
| 150 | + assert record.features["values"].float64_tensor.shape == [len(expected_data)] |
| 151 | + |
| 152 | + |
| 153 | +def test_dense_float32_write_numpy_to_sparse_tensor(): |
| 154 | + array_data = [[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]] |
| 155 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 156 | + array = coo_matrix(np.array(array_data).astype(np.dtype('float32'))) |
| 157 | + with tempfile.TemporaryFile() as f: |
| 158 | + write_numpy_to_sparse_tensor(f, array) |
| 159 | + f.seek(0) |
| 160 | + for record_data, expected_data, expected_keys in zip(_read_recordio(f), array_data, keys_data): |
| 161 | + record = Record() |
| 162 | + record.ParseFromString(record_data) |
| 163 | + assert record.features["values"].float32_tensor.values == expected_data |
| 164 | + assert record.features["values"].float32_tensor.keys == expected_keys |
| 165 | + assert record.features["values"].float32_tensor.shape == [len(expected_data)] |
| 166 | + |
| 167 | + |
| 168 | +def test_dense_int_write_numpy_to_sparse_tensor(): |
| 169 | + array_data = [[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]] |
| 170 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 171 | + array = coo_matrix(np.array(array_data).astype(np.dtype('int'))) |
| 172 | + with tempfile.TemporaryFile() as f: |
| 173 | + write_numpy_to_sparse_tensor(f, array) |
| 174 | + f.seek(0) |
| 175 | + for record_data, expected_data, expected_keys in zip(_read_recordio(f), array_data, keys_data): |
| 176 | + record = Record() |
| 177 | + record.ParseFromString(record_data) |
| 178 | + assert record.features["values"].int32_tensor.values == expected_data |
| 179 | + assert record.features["values"].int32_tensor.keys == expected_keys |
| 180 | + assert record.features["values"].int32_tensor.shape == [len(expected_data)] |
| 181 | + |
| 182 | + |
| 183 | +def test_dense_int_numpy_to_sparse_label(): |
| 184 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 185 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 186 | + array = coo_matrix(np.array(array_data)) |
| 187 | + label_data = np.array([99, 98, 97]) |
| 188 | + with tempfile.TemporaryFile() as f: |
| 189 | + write_numpy_to_sparse_tensor(f, array, label_data) |
| 190 | + f.seek(0) |
| 191 | + for record_data, expected_data, expected_keys, label in zip(_read_recordio(f), array_data, keys_data, label_data): |
| 192 | + record = Record() |
| 193 | + record.ParseFromString(record_data) |
| 194 | + assert record.features["values"].int32_tensor.values == expected_data |
| 195 | + assert record.features["values"].int32_tensor.keys == expected_keys |
| 196 | + assert record.label["values"].int32_tensor.values == [label] |
| 197 | + assert record.features["values"].int32_tensor.shape == [len(expected_data)] |
| 198 | + |
| 199 | + |
| 200 | +def test_dense_float32_numpy_to_sparse_label(): |
| 201 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 202 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 203 | + array = coo_matrix(np.array(array_data).astype('float32')) |
| 204 | + label_data = np.array([99, 98, 97]) |
| 205 | + with tempfile.TemporaryFile() as f: |
| 206 | + write_numpy_to_sparse_tensor(f, array, label_data) |
| 207 | + f.seek(0) |
| 208 | + for record_data, expected_data, expected_keys, label in zip(_read_recordio(f), array_data, keys_data, label_data): |
| 209 | + record = Record() |
| 210 | + record.ParseFromString(record_data) |
| 211 | + assert record.features["values"].float32_tensor.values == expected_data |
| 212 | + assert record.features["values"].float32_tensor.keys == expected_keys |
| 213 | + assert record.label["values"].int32_tensor.values == [label] |
| 214 | + assert record.features["values"].float32_tensor.shape == [len(expected_data)] |
| 215 | + |
| 216 | + |
| 217 | +def test_dense_float64_numpy_to_sparse_label(): |
| 218 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 219 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 220 | + array = coo_matrix(np.array(array_data).astype('float64')) |
| 221 | + label_data = np.array([99, 98, 97]) |
| 222 | + with tempfile.TemporaryFile() as f: |
| 223 | + write_numpy_to_sparse_tensor(f, array, label_data) |
| 224 | + f.seek(0) |
| 225 | + for record_data, expected_data, expected_keys, label in zip(_read_recordio(f), array_data, keys_data, label_data): |
| 226 | + record = Record() |
| 227 | + record.ParseFromString(record_data) |
| 228 | + assert record.features["values"].float64_tensor.values == expected_data |
| 229 | + assert record.features["values"].float64_tensor.keys == expected_keys |
| 230 | + assert record.label["values"].int32_tensor.values == [label] |
| 231 | + assert record.features["values"].float64_tensor.shape == [len(expected_data)] |
| 232 | + |
| 233 | + |
| 234 | +def test_invalid_sparse_label(): |
| 235 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 236 | + array = coo_matrix(np.array(array_data)) |
| 237 | + label_data = np.array([99, 98, 97, 1000]).astype(np.dtype('float64')) |
| 238 | + with tempfile.TemporaryFile() as f: |
| 239 | + with pytest.raises(ValueError): |
| 240 | + write_numpy_to_sparse_tensor(f, array, label_data) |
| 241 | + |
| 242 | + |
| 243 | +def test_sparse_float_write_numpy_to_sparse_tensor(): |
| 244 | + n = 4 |
| 245 | + array_data = [[1.0, 2.0], [10.0, 30.0], [100.0, 200.0, 300.0, 400.0], [1000.0, 2000.0, 3000.0]] |
| 246 | + keys_data = [[0, 1], [1, 2], [0, 1, 2, 3], [0, 2, 3]] |
| 247 | + |
| 248 | + flatten_data = list(itertools.chain.from_iterable(array_data)) |
| 249 | + y_indices = list(itertools.chain.from_iterable(keys_data)) |
| 250 | + x_indices = [[i] * len(keys_data[i]) for i in range(len(keys_data))] |
| 251 | + x_indices = list(itertools.chain.from_iterable(x_indices)) |
| 252 | + |
| 253 | + array = coo_matrix((flatten_data, (x_indices, y_indices)), dtype='float64') |
| 254 | + with tempfile.TemporaryFile() as f: |
| 255 | + write_numpy_to_sparse_tensor(f, array) |
| 256 | + f.seek(0) |
| 257 | + for record_data, expected_data, expected_keys in zip(_read_recordio(f), array_data, keys_data): |
| 258 | + record = Record() |
| 259 | + record.ParseFromString(record_data) |
| 260 | + assert record.features["values"].float64_tensor.values == expected_data |
| 261 | + assert record.features["values"].float64_tensor.keys == expected_keys |
| 262 | + assert record.features["values"].float64_tensor.shape == [n] |
| 263 | + |
| 264 | + |
| 265 | +def test_sparse_float32_write_numpy_to_sparse_tensor(): |
| 266 | + n = 4 |
| 267 | + array_data = [[1.0, 2.0], [10.0, 30.0], [100.0, 200.0, 300.0, 400.0], [1000.0, 2000.0, 3000.0]] |
| 268 | + keys_data = [[0, 1], [1, 2], [0, 1, 2, 3], [0, 2, 3]] |
| 269 | + |
| 270 | + flatten_data = list(itertools.chain.from_iterable(array_data)) |
| 271 | + y_indices = list(itertools.chain.from_iterable(keys_data)) |
| 272 | + x_indices = [[i] * len(keys_data[i]) for i in range(len(keys_data))] |
| 273 | + x_indices = list(itertools.chain.from_iterable(x_indices)) |
| 274 | + |
| 275 | + array = coo_matrix((flatten_data, (x_indices, y_indices)), dtype='float32') |
| 276 | + with tempfile.TemporaryFile() as f: |
| 277 | + write_numpy_to_sparse_tensor(f, array) |
| 278 | + f.seek(0) |
| 279 | + for record_data, expected_data, expected_keys in zip(_read_recordio(f), array_data, keys_data): |
| 280 | + record = Record() |
| 281 | + record.ParseFromString(record_data) |
| 282 | + assert record.features["values"].float32_tensor.values == expected_data |
| 283 | + assert record.features["values"].float32_tensor.keys == expected_keys |
| 284 | + assert record.features["values"].float32_tensor.shape == [n] |
| 285 | + |
| 286 | + |
| 287 | +def test_sparse_int_write_numpy_to_sparse_tensor(): |
| 288 | + n = 4 |
| 289 | + array_data = [[1.0, 2.0], [10.0, 30.0], [100.0, 200.0, 300.0, 400.0], [1000.0, 2000.0, 3000.0]] |
| 290 | + keys_data = [[0, 1], [1, 2], [0, 1, 2, 3], [0, 2, 3]] |
| 291 | + |
| 292 | + flatten_data = list(itertools.chain.from_iterable(array_data)) |
| 293 | + y_indices = list(itertools.chain.from_iterable(keys_data)) |
| 294 | + x_indices = [[i] * len(keys_data[i]) for i in range(len(keys_data))] |
| 295 | + x_indices = list(itertools.chain.from_iterable(x_indices)) |
| 296 | + |
| 297 | + array = coo_matrix((flatten_data, (x_indices, y_indices)), dtype='int') |
| 298 | + with tempfile.TemporaryFile() as f: |
| 299 | + write_numpy_to_sparse_tensor(f, array) |
| 300 | + f.seek(0) |
| 301 | + for record_data, expected_data, expected_keys in zip(_read_recordio(f), array_data, keys_data): |
| 302 | + record = Record() |
| 303 | + record.ParseFromString(record_data) |
| 304 | + assert record.features["values"].int32_tensor.values == expected_data |
| 305 | + assert record.features["values"].int32_tensor.keys == expected_keys |
| 306 | + assert record.features["values"].int32_tensor.shape == [n] |
| 307 | + |
| 308 | + |
| 309 | +def test_dense_to_sparse_array(): |
| 310 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 311 | + array = np.array(array_data) |
| 312 | + label_data = np.array([99, 98, 97]).astype(np.dtype('float64')) |
| 313 | + with tempfile.TemporaryFile() as f: |
| 314 | + with pytest.raises(TypeError): |
| 315 | + write_numpy_to_sparse_tensor(f, array, label_data) |
0 commit comments