Skip to content

Commit da03d7f

Browse files
author
Kim
committed
Fix minor formatting errors
1 parent ced1399 commit da03d7f

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

doc/frameworks/xgboost/using_xgboost.rst

+6-6
Original file line numberDiff line numberDiff line change
@@ -395,10 +395,10 @@ Bring your own model
395395

396396
You can deploy an XGBoost model that you trained outside of SageMaker by using the Amazon SageMaker XGBoost container.
397397
Typically, you save an XGBoost model by pickling the ``Booster`` object or calling ``booster.save_model``.
398-
The XGBoost `built-in algorithm mode<https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html#xgboost-modes>`_
398+
The XGBoost `built-in algorithm mode <https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html#xgboost-modes>`_
399399
supports both a pickled ``Booster`` object and a model produced by ``booster.save_model``.
400400
For a sample notebook that shows to use the XGBoost built-in algorith mode to load a pre-existing XGBoost model,
401-
see `Amazon SageMaker XGBoost Bring Your Own Model<https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/xgboost_bring_your_own_model/xgboost_bring_your_own_model.ipynb>`_.
401+
see `Amazon SageMaker XGBoost Bring Your Own Model <https://github.com/awslabs/amazon-sagemaker-examples/blob/master/advanced_functionality/xgboost_bring_your_own_model/xgboost_bring_your_own_model.ipynb>`_.
402402

403403
You can also deploy an XGBoost model by using XGBoost as a framework.
404404
By using XGBoost as a framework, you have more flexibility.
@@ -407,7 +407,7 @@ To deploy an XGBoost model by using XGBoost as a framework, you need to:
407407
- Create the XGBoostModel object.
408408

409409
Write an inference script
410-
"""""""""""""""""""""""""
410+
^^^^^^^^^^^^^^^^^^^^^^^^^
411411

412412
You must create an inference script that implements (at least) the ``model_fn`` function that calls the loaded model to get a prediction.
413413

@@ -417,7 +417,7 @@ For information about how to write an inference script, see `SageMaker XGBoost M
417417
Pass the filename of the inference script as the ``entry_point`` parameter when you create the `XGBoostModel` object.
418418

419419
Create a XGBoostModel object
420-
""""""""""""""""""""""""""""
420+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
421421

422422
Now call the ``sagemaker.xgboost.model.XGBoostModel`` constructor to create a model object,
423423
and then call its ``deploy()`` method to deploy your model for inference.
@@ -426,14 +426,14 @@ and then call its ``deploy()`` method to deploy your model for inference.
426426
427427
from sagemaker import get_execution_role
428428
role = get_execution_role()
429-
429+
430430
xgboos_model = XGBoostModel(
431431
model_data="s3://my-bucket/my-path/model.tar.gz",
432432
role=role,
433433
entry_point="inference.py",
434434
framework_version="1.0-1"
435435
)
436-
436+
437437
predictor = xgboost_model.deploy(
438438
instance_type='ml.c4.xlarge',
439439
initial_instance_count=1

0 commit comments

Comments
 (0)