@@ -18,7 +18,7 @@ Table of Contents
18
18
5. `SageMaker Scikit-learn Model Server <#sagemaker-scikit-learn-model-server >`__
19
19
6. `Working with Existing Model Data and Training Jobs <#working-with-existing-model-data-and-training-jobs >`__
20
20
7. `Scikit-learn Training Examples <#scikit-learn-training-examples >`__
21
- 8. `SageMaker PyTorch Docker Containers <#sagemaker-pytorch -docker-containers >`__
21
+ 8. `SageMaker Scikit-learn Docker Containers <#sagemaker-scikit-learn -docker-containers >`__
22
22
23
23
24
24
Training with Scikit-learn
@@ -62,7 +62,6 @@ can access useful properties about the training environment through various envi
62
62
63
63
* ``SM_MODEL_DIR ``: A string representing the path to the directory to write model artifacts to.
64
64
These artifacts are uploaded to S3 for model hosting.
65
- * ``SM_NUM_GPUS ``: An integer representing the number of GPUs available to the host.
66
65
* ``SM_OUTPUT_DATA_DIR ``: A string representing the filesystem path to write output artifacts to. Output artifacts may
67
66
include checkpoints, graphs, and other files to save, not including model artifacts. These artifacts are compressed
68
67
and uploaded to S3 to the same S3 prefix as the model artifacts.
@@ -109,7 +108,7 @@ inadvertently run your training code at the wrong point in execution.
109
108
For more on training environment variables, please visit https://github.com/aws/sagemaker-containers.
110
109
111
110
Running a Scikit-learn training script in SageMaker
112
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
111
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
113
112
114
113
You run Scikit-learn training scripts on SageMaker by creating ``SKLearn `` Estimators.
115
114
SageMaker training of your script is invoked when you call ``fit `` on a ``SKLearn `` Estimator.
@@ -188,7 +187,7 @@ The following are optional arguments. When you create a ``SKLearn`` object, you
188
187
serving. If specified, the estimator will use this image for training and
189
188
hosting, instead of selecting the appropriate SageMaker official image based on
190
189
framework_version and py_version. Refer to: `SageMaker Scikit-learn Docker Containers
191
- <#sagemaker-sklearn- docker-containers> `_ for details on what the Official images support
190
+ <#sagemaker-scikit-learn- docker-containers> `_ for details on what the official images support
192
191
and where to find the source code to build your custom image.
193
192
194
193
@@ -292,7 +291,7 @@ You can access the name of the Endpoint by the ``name`` property on the returned
292
291
293
292
294
293
SageMaker Scikit-learn Model Server
295
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
294
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
296
295
297
296
The Scikit-learn Endpoint you create with ``deploy `` runs a SageMaker Scikit-learn model server.
298
297
The model server loads the model that was saved by your training script and performs inference on the model in response
@@ -605,7 +604,7 @@ https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-pytho
605
604
These are also available in SageMaker Notebook Instance hosted Jupyter notebooks under the "sample notebooks" folder.
606
605
607
606
608
- SageMaker Scikit-learn Docker containers
607
+ SageMaker Scikit-learn Docker Containers
609
608
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
610
609
611
610
When training and deploying training scripts, SageMaker runs your Python script in a Docker container with several
@@ -629,7 +628,7 @@ The Scikit-learn Docker images have the following dependencies installed:
629
628
| sagemaker-containers | 2.2.4 |
630
629
+-----------------------------+-------------+
631
630
| numpy | 1.15.2 |
632
- +------------------------------ -------------+
631
+ +-----------------------------+ -------------+
633
632
| pandas | 0.23.4 |
634
633
+-----------------------------+-------------+
635
634
| Pillow | 3.1.2 |
@@ -649,4 +648,4 @@ version.
649
648
Alternatively, you can build your own image by following the instructions in the SageMaker Scikit-learn containers
650
649
repository, and passing ``image_name `` to the Scikit-learn Estimator constructor.
651
650
sagemaker-containers
652
- You can visit the SageMaker Scikit-learn containers repository here: https://github.com/aws/sagemaker-sklearn-containers /
651
+ You can visit the SageMaker Scikit-learn containers repository here: https://github.com/aws/sagemaker-scikit-learn-container /
0 commit comments