Skip to content

Commit b92e9c5

Browse files
authored
Merge branch 'aws:dev' into jeniyat/hf-inf-neuron
2 parents 07b03c5 + 4325fcd commit b92e9c5

File tree

6 files changed

+62
-23
lines changed

6 files changed

+62
-23
lines changed

.readthedocs.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
version: 2
66

77
python:
8-
version: 3.6
8+
version: 3.9
99
install:
1010
- method: pip
1111
path: .

doc/conf.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
1111
# ANY KIND, either express or implied. See the License for the specific
1212
# language governing permissions and limitations under the License.
13-
"""Placeholder docstring"""
13+
"""Configuration for generating readthedocs docstrings."""
1414
from __future__ import absolute_import
1515

1616
import pkg_resources

src/sagemaker/huggingface/estimator.py

+7-6
Original file line numberDiff line numberDiff line change
@@ -50,14 +50,15 @@ def __init__(
5050
compiler_config=None,
5151
**kwargs,
5252
):
53-
"""This ``Estimator`` executes a HuggingFace script in a managed execution environment.
53+
"""This estimator runs a Hugging Face training script in a SageMaker training environment.
5454
55-
The managed HuggingFace environment is an Amazon-built Docker container that executes
56-
functions defined in the supplied ``entry_point`` Python script within a SageMaker
57-
Training Job.
55+
The estimator initiates the SageMaker-managed Hugging Face environment
56+
by using the pre-built Hugging Face Docker container and runs
57+
the Hugging Face training script that user provides through
58+
the ``entry_point`` argument.
5859
59-
Training is started by calling
60-
:meth:`~sagemaker.amazon.estimator.Framework.fit` on this Estimator.
60+
After configuring the estimator class, use the class method
61+
:meth:`~sagemaker.amazon.estimator.Framework.fit()` to start a training job.
6162
6263
Args:
6364
py_version (str): Python version you want to use for executing your model training

src/sagemaker/model.py

+6-3
Original file line numberDiff line numberDiff line change
@@ -466,7 +466,7 @@ def _upload_code(self, key_prefix: str, repack: bool = False) -> None:
466466
)
467467

468468
def _script_mode_env_vars(self):
469-
"""Placeholder docstring"""
469+
"""Returns a mapping of environment variables for script mode execution"""
470470
script_name = None
471471
dir_name = None
472472
if self.uploaded_code:
@@ -478,8 +478,11 @@ def _script_mode_env_vars(self):
478478
elif self.entry_point is not None:
479479
script_name = self.entry_point
480480
if self.source_dir is not None:
481-
dir_name = "file://" + self.source_dir
482-
481+
dir_name = (
482+
self.source_dir
483+
if self.source_dir.startswith("s3://")
484+
else "file://" + self.source_dir
485+
)
483486
return {
484487
SCRIPT_PARAM_NAME.upper(): script_name or str(),
485488
DIR_PARAM_NAME.upper(): dir_name or str(),

src/sagemaker/training_compiler/config.py

+28-11
Original file line numberDiff line numberDiff line change
@@ -18,11 +18,7 @@
1818

1919

2020
class TrainingCompilerConfig(object):
21-
"""The configuration class for accelerating SageMaker training jobs through compilation.
22-
23-
SageMaker Training Compiler speeds up training by optimizing the model execution graph.
24-
25-
"""
21+
"""The SageMaker Training Compiler configuration class."""
2622

2723
DEBUG_PATH = "/opt/ml/output/data/compiler/"
2824
SUPPORTED_INSTANCE_CLASS_PREFIXES = ["p3", "g4dn", "p4"]
@@ -37,9 +33,15 @@ def __init__(
3733
):
3834
"""This class initializes a ``TrainingCompilerConfig`` instance.
3935
40-
Pass the output of it to the ``compiler_config``
36+
`Amazon SageMaker Training Compiler
37+
<https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html>`_
38+
is a feature of SageMaker Training
39+
and speeds up training jobs by optimizing model execution graphs.
40+
41+
You can compile Hugging Face models
42+
by passing the object of this configuration class to the ``compiler_config``
4143
parameter of the :class:`~sagemaker.huggingface.HuggingFace`
42-
class.
44+
estimator.
4345
4446
Args:
4547
enabled (bool): Optional. Switch to enable SageMaker Training Compiler.
@@ -48,13 +50,28 @@ def __init__(
4850
This comes with a potential performance slowdown.
4951
The default is ``False``.
5052
51-
**Example**: The following example shows the basic ``compiler_config``
52-
parameter configuration, enabling compilation with default parameter values.
53+
**Example**: The following code shows the basic usage of the
54+
:class:`sagemaker.huggingface.TrainingCompilerConfig()` class
55+
to run a HuggingFace training job with the compiler.
5356
5457
.. code-block:: python
5558
56-
from sagemaker.huggingface import TrainingCompilerConfig
57-
compiler_config = TrainingCompilerConfig()
59+
from sagemaker.huggingface import HuggingFace, TrainingCompilerConfig
60+
61+
huggingface_estimator=HuggingFace(
62+
...
63+
compiler_config=TrainingCompilerConfig()
64+
)
65+
66+
.. seealso::
67+
68+
For more information about how to enable SageMaker Training Compiler
69+
for various training settings such as using TensorFlow-based models,
70+
PyTorch-based models, and distributed training,
71+
see `Enable SageMaker Training Compiler
72+
<https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-enable.html>`_
73+
in the `Amazon SageMaker Training Compiler developer guide
74+
<https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html>`_.
5875
5976
"""
6077

tests/unit/sagemaker/model/test_model.py

+19-1
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,8 @@
2626
from sagemaker.sklearn.model import SKLearnModel
2727
from sagemaker.tensorflow.model import TensorFlowModel
2828
from sagemaker.xgboost.model import XGBoostModel
29+
from sagemaker.workflow.properties import Properties
30+
2931

3032
MODEL_DATA = "s3://bucket/model.tar.gz"
3133
MODEL_IMAGE = "mi"
@@ -42,7 +44,6 @@
4244
BRANCH = "test-branch-git-config"
4345
COMMIT = "ae15c9d7d5b97ea95ea451e4662ee43da3401d73"
4446
ENTRY_POINT_INFERENCE = "inference.py"
45-
4647
SCRIPT_URI = "s3://codebucket/someprefix/sourcedir.tar.gz"
4748
IMAGE_URI = "763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference:1.9.0-gpu-py38"
4849

@@ -71,6 +72,23 @@ def sagemaker_session():
7172
return sms
7273

7374

75+
@patch("shutil.rmtree", MagicMock())
76+
@patch("tarfile.open", MagicMock())
77+
@patch("os.listdir", MagicMock(return_value=[ENTRY_POINT_INFERENCE]))
78+
def test_prepare_container_def_with_model_src_s3_returns_correct_url(sagemaker_session):
79+
model = Model(
80+
entry_point=ENTRY_POINT_INFERENCE,
81+
role=ROLE,
82+
sagemaker_session=sagemaker_session,
83+
source_dir=SCRIPT_URI,
84+
image_uri=MODEL_IMAGE,
85+
model_data=Properties("Steps.MyStep"),
86+
)
87+
container_def = model.prepare_container_def(INSTANCE_TYPE, "ml.eia.medium")
88+
89+
assert container_def["Environment"]["SAGEMAKER_SUBMIT_DIRECTORY"] == SCRIPT_URI
90+
91+
7492
def test_prepare_container_def_with_model_data():
7593
model = Model(MODEL_IMAGE)
7694
container_def = model.prepare_container_def(INSTANCE_TYPE, "ml.eia.medium")

0 commit comments

Comments
 (0)