@@ -384,8 +384,7 @@ def test_tuning_mxnet(sagemaker_session):
384
384
train_instance_count = 1 ,
385
385
train_instance_type = 'ml.m4.xlarge' ,
386
386
framework_version = '1.2.1' ,
387
- sagemaker_session = sagemaker_session ,
388
- base_job_name = 'tune-mxnet' )
387
+ sagemaker_session = sagemaker_session )
389
388
390
389
hyperparameter_ranges = {'learning_rate' : ContinuousParameter (0.01 , 0.2 )}
391
390
objective_metric_name = 'Validation-accuracy'
@@ -424,8 +423,7 @@ def test_tuning_tf(sagemaker_session):
424
423
hyperparameters = {'input_tensor_name' : 'inputs' },
425
424
train_instance_count = 1 ,
426
425
train_instance_type = 'ml.c4.xlarge' ,
427
- sagemaker_session = sagemaker_session ,
428
- base_job_name = 'tune-tf' )
426
+ sagemaker_session = sagemaker_session )
429
427
430
428
inputs = sagemaker_session .upload_data (path = DATA_PATH , key_prefix = 'integ-test-data/tf_iris' )
431
429
hyperparameter_ranges = {'learning_rate' : ContinuousParameter (0.05 , 0.2 )}
@@ -484,7 +482,7 @@ def test_tuning_chainer(sagemaker_session):
484
482
tuner = HyperparameterTuner (estimator , objective_metric_name , hyperparameter_ranges , metric_definitions ,
485
483
max_jobs = 2 , max_parallel_jobs = 2 )
486
484
487
- tuner .fit ({'train' : train_input , 'test' : test_input }, job_name = 'tune-chainer' )
485
+ tuner .fit ({'train' : train_input , 'test' : test_input }, job_name = _job_name ( 'tune-chainer' ) )
488
486
489
487
print ('Started hyperparameter tuning job with name:' + tuner .latest_tuning_job .name )
490
488
@@ -580,7 +578,7 @@ def test_tuning_byo_estimator(sagemaker_session):
580
578
estimator = Estimator (image_name = image_name ,
581
579
role = 'SageMakerRole' , train_instance_count = 1 ,
582
580
train_instance_type = 'ml.c4.xlarge' ,
583
- sagemaker_session = sagemaker_session , base_job_name = 'test-byo' )
581
+ sagemaker_session = sagemaker_session )
584
582
585
583
estimator .set_hyperparameters (num_factors = 10 ,
586
584
feature_dim = 784 ,
@@ -589,7 +587,7 @@ def test_tuning_byo_estimator(sagemaker_session):
589
587
590
588
hyperparameter_ranges = {'mini_batch_size' : IntegerParameter (100 , 200 )}
591
589
592
- tuner = HyperparameterTuner (estimator = estimator , base_tuning_job_name = 'byo' ,
590
+ tuner = HyperparameterTuner (estimator = estimator ,
593
591
objective_metric_name = 'test:binary_classification_accuracy' ,
594
592
hyperparameter_ranges = hyperparameter_ranges ,
595
593
max_jobs = 2 , max_parallel_jobs = 2 )
0 commit comments