@@ -94,7 +94,7 @@ def __init__(
94
94
"""Initialize an ChainerModel.
95
95
96
96
Args:
97
- model_data (str): The S3 location of a SageMaker model data
97
+ model_data (str or PipelineVariable ): The S3 location of a SageMaker model data
98
98
``.tar.gz`` file.
99
99
role (str): An AWS IAM role (either name or full ARN). The Amazon
100
100
SageMaker training jobs and APIs that create Amazon SageMaker
@@ -105,8 +105,8 @@ def __init__(
105
105
file which should be executed as the entry point to model
106
106
hosting. If ``source_dir`` is specified, then ``entry_point``
107
107
must point to a file located at the root of ``source_dir``.
108
- image_uri (str): A Docker image URI (default: None). If not specified,
109
- a default image for Chainer will be used.
108
+ image_uri (str or PipelineVariable ): A Docker image URI (default: None).
109
+ If not specified, a default image for Chainer will be used.
110
110
If ``framework_version`` or ``py_version``
111
111
are ``None``, then ``image_uri`` is required. If ``image_uri`` is also ``None``,
112
112
then a ``ValueError`` will be raised.
@@ -120,7 +120,7 @@ def __init__(
120
120
to call to create a predictor with an endpoint name and
121
121
SageMaker ``Session``. If specified, ``deploy()`` returns the
122
122
result of invoking this function on the created endpoint name.
123
- model_server_workers (int): Optional. The number of worker processes
123
+ model_server_workers (int or PipelineVariable ): Optional. The number of worker processes
124
124
used by the inference server. If None, server will use one
125
125
worker per vCPU.
126
126
**kwargs: Keyword arguments passed to the
@@ -173,43 +173,49 @@ def register(
173
173
"""Creates a model package for creating SageMaker models or listing on Marketplace.
174
174
175
175
Args:
176
- content_types (list): The supported MIME types for the input data.
177
- response_types (list): The supported MIME types for the output data.
178
- inference_instances (list): A list of the instance types that are used to
179
- generate inferences in real-time.
180
- transform_instances (list): A list of the instance types on which a transformation
181
- job can be run or on which an endpoint can be deployed.
182
- model_package_name (str): Model Package name, exclusive to `model_package_group_name`,
183
- using `model_package_name` makes the Model Package un-versioned (default: None).
184
- model_package_group_name (str): Model Package Group name, exclusive to
185
- `model_package_name`, using `model_package_group_name` makes the Model Package
186
- versioned (default: None).
187
- image_uri (str): Inference image uri for the container. Model class' self.image will
188
- be used if it is None (default: None).
176
+ content_types (list[str] or list[PipelineVariable]): The supported MIME types
177
+ for the input data.
178
+ response_types (list[str] or list[PipelineVariable]): The supported MIME types
179
+ for the output data.
180
+ inference_instances (list[str] or list[PipelineVariable]): A list of the instance
181
+ types that are used to generate inferences in real-time.
182
+ transform_instances (list[str] or list[PipelineVariable]): A list of the instance
183
+ types on which a transformation job can be run or on which an endpoint
184
+ can be deployed.
185
+ model_package_name (str or PipelineVariable): Model Package name, exclusive to
186
+ `model_package_group_name`, using `model_package_name` makes the Model Package
187
+ un-versioned (default: None).
188
+ model_package_group_name (str or PipelineVariable): Model Package Group name,
189
+ exclusive to `model_package_name`, using `model_package_group_name` makes the
190
+ Model Package versioned (default: None).
191
+ image_uri (str or PipelineVariable): Inference image uri for the container. Model class'
192
+ self.image will be used if it is None (default: None).
189
193
model_metrics (ModelMetrics): ModelMetrics object (default: None).
190
194
metadata_properties (MetadataProperties): MetadataProperties (default: None).
191
195
marketplace_cert (bool): A boolean value indicating if the Model Package is certified
192
196
for AWS Marketplace (default: False).
193
- approval_status (str): Model Approval Status, values can be "Approved", "Rejected",
194
- or "PendingManualApproval" (default: "PendingManualApproval").
197
+ approval_status (str or PipelineVariable): Model Approval Status, values can be
198
+ "Approved", "Rejected", or "PendingManualApproval"
199
+ (default: "PendingManualApproval").
195
200
description (str): Model Package description (default: None).
196
201
drift_check_baselines (DriftCheckBaselines): DriftCheckBaselines object (default: None).
197
- customer_metadata_properties (dict[str, str]): A dictionary of key-value paired
198
- metadata properties (default: None).
199
- domain (str): Domain values can be "COMPUTER_VISION", "NATURAL_LANGUAGE_PROCESSING",
200
- "MACHINE_LEARNING" (default: None).
201
- sample_payload_url (str): The S3 path where the sample payload is stored
202
+ customer_metadata_properties (dict[str, str] or dict[str, PipelineVariable]):
203
+ A dictionary of key-value paired metadata properties (default: None).
204
+ domain (str or PipelineVariable): Domain values can be "COMPUTER_VISION",
205
+ "NATURAL_LANGUAGE_PROCESSING", "MACHINE_LEARNING" (default: None).
206
+ sample_payload_url (str or PipelineVariable): The S3 path where the sample payload
207
+ is stored (default: None).
208
+ task (str or PipelineVariable): Task values which are supported by Inference Recommender
209
+ are "FILL_MASK", "IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION",
210
+ "IMAGE_SEGMENTATION", "CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
211
+ framework (str or PipelineVariable): Machine learning framework of the model package
212
+ container image (default: None).
213
+ framework_version (str or PipelineVariable): Framework version of the Model Package
214
+ Container Image (default: None).
215
+ nearest_model_name (str or PipelineVariable): Name of a pre-trained machine learning
216
+ benchmarked by Amazon SageMaker Inference Recommender (default: None).
217
+ data_input_configuration (str or PipelineVariable): Input object for the model
202
218
(default: None).
203
- task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
204
- "IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
205
- "CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
206
- framework (str): Machine learning framework of the model package container image
207
- (default: None).
208
- framework_version (str): Framework version of the Model Package Container Image
209
- (default: None).
210
- nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
211
- Amazon SageMaker Inference Recommender (default: None).
212
- data_input_configuration (str): Input object for the model (default: None).
213
219
214
220
Returns:
215
221
str: A string of SageMaker Model Package ARN.
0 commit comments