|
13 | 13 | from __future__ import absolute_import
|
14 | 14 |
|
15 | 15 | import os
|
| 16 | +import sys |
16 | 17 |
|
17 | 18 | import pytest
|
18 | 19 | import numpy as np
|
|
42 | 43 | from sagemaker.sklearn import SKLearn
|
43 | 44 | from sagemaker.tensorflow import TensorFlow
|
44 | 45 | from sagemaker.utils import sagemaker_timestamp
|
45 |
| -from sagemaker.workflow import airflow as sm_airflow |
46 | 46 | from sagemaker.xgboost import XGBoost
|
47 | 47 | from tests.integ import datasets, DATA_DIR
|
48 | 48 | from tests.integ.record_set import prepare_record_set_from_local_files
|
|
54 | 54 | seconds_to_sleep=6,
|
55 | 55 | ):
|
56 | 56 | try:
|
57 |
| - from airflow import utils |
58 |
| - from airflow import DAG |
59 |
| - from airflow.providers.amazon.aws.operators.sagemaker import SageMakerTrainingOperator |
60 |
| - from airflow.providers.amazon.aws.operators.sagemaker_transform import ( |
61 |
| - SageMakerTransformOperator, |
62 |
| - ) |
| 57 | + import sagemaker.workflow.airflow as sm_airflow |
| 58 | + import airflow.utils as utils |
| 59 | + import airflow.DAG as DAG |
| 60 | + import airflow.providers.amazon.aws.operators.sagemaker.SageMakerTrainingOperator as SageMakerTrainingOperator |
| 61 | + import airflow.providers.amazon.aws.operators.sagemaker_transform.SageMakerTransformOperator as SageMakerTransformOperator |
63 | 62 |
|
64 | 63 | break
|
65 | 64 | except ParsingError:
|
66 | 65 | pass
|
| 66 | + except ValueError as ve: |
| 67 | + if "Unable to configure formatter" in str(ve): |
| 68 | + print(f"Received: {ve}") |
| 69 | + else: |
| 70 | + raise ve |
67 | 71 |
|
68 | 72 | PYTORCH_MNIST_DIR = os.path.join(DATA_DIR, "pytorch_mnist")
|
69 | 73 | PYTORCH_MNIST_SCRIPT = os.path.join(PYTORCH_MNIST_DIR, "mnist.py")
|
|
0 commit comments