You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: doc/amazon_sagemaker_model_building_pipeline.rst
+48Lines changed: 48 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -97,6 +97,54 @@ When you use :class:`sagemaker.workflow.pipeline_context.PipelineSession` rather
97
97
.. warning::
98
98
A :class:`sagemaker.workflow.pipeline_context.PipelineSession` must be given in order to start the job during pipeline execution time. Otherwise, a training job will get started immediately.
99
99
100
+
Local Pipeline Session
101
+
======================
102
+
103
+
Like Pipeline Session, Local Pipeline Session provides a convenient way to capture input job arguments without starting the job. These input arguments can be provided in the :code:`step_args` parameter to their corresponding `Pipelines step type <https://sagemaker.readthedocs.io/en/stable/workflows/pipelines/sagemaker.workflow.pipelines.html#sagemaker.workflow.steps.Step>`__. The difference between :class:`sagemaker.workflow.pipeline_context.PipelineSession` and :class:`sagemaker.workflow.pipeline_context.LocalPipelineSession` is that :class:`sagemaker.workflow.pipeline_context.LocalPipelineSession` is used to run SageMaker pipelines locally (in local mode) whereas using :class:`sagemaker.workflow.pipeline_context.PipelineSession` runs the job on the managed service.
104
+
105
+
.. code-block:: python
106
+
107
+
from sagemaker.workflow.pipeline_context import LocalPipelineSession
0 commit comments