@@ -51,7 +51,7 @@ class LinearLearner(AmazonAlgorithmEstimatorBase):
51
51
momentum = hp ('momentum' , (gt (0 ), lt (1 )), 'A float in (0,1)' , float )
52
52
learning_rate = hp ('learning_rate' , (gt (0 ), lt (1 )), 'A float in (0,1)' , float )
53
53
beta_1 = hp ('beta_1' , (gt (0 ), lt (1 )), 'A float in (0,1)' , float )
54
- beta_2 = hp ('beta_1 ' , (gt (0 ), lt (1 )), 'A float in (0,1)' , float )
54
+ beta_2 = hp ('beta_2 ' , (gt (0 ), lt (1 )), 'A float in (0,1)' , float )
55
55
bias_lr_mult = hp ('bias_lr_mult' , gt (0 ), 'A float greater-than 0' , float )
56
56
bias_wd_mult = hp ('bias_wd_mult' , gt (0 ), 'A float greater-than 0' , float )
57
57
use_lr_scheduler = hp ('use_lr_scheduler' , (), 'A boolean' , bool )
@@ -62,7 +62,7 @@ class LinearLearner(AmazonAlgorithmEstimatorBase):
62
62
normalize_label = hp ('normalize_label' , (), 'A boolean' , bool )
63
63
unbias_data = hp ('unbias_data' , (), 'A boolean' , bool )
64
64
unbias_label = hp ('unbias_label' , (), 'A boolean' , bool )
65
- num_point_for_scalar = hp ('num_point_for_scalar ' , gt (0 ), 'An integer greater-than 0' , int )
65
+ num_point_for_scaler = hp ('num_point_for_scaler ' , gt (0 ), 'An integer greater-than 0' , int )
66
66
67
67
def __init__ (self , role , train_instance_count , train_instance_type , predictor_type = 'binary_classifier' ,
68
68
binary_classifier_model_selection_criteria = None , target_recall = None , target_precision = None ,
@@ -71,7 +71,7 @@ def __init__(self, role, train_instance_count, train_instance_type, predictor_ty
71
71
optimizer = None , loss = None , wd = None , l1 = None , momentum = None , learning_rate = None , beta_1 = None ,
72
72
beta_2 = None , bias_lr_mult = None , bias_wd_mult = None , use_lr_scheduler = None , lr_scheduler_step = None ,
73
73
lr_scheduler_factor = None , lr_scheduler_minimum_lr = None , normalize_data = None ,
74
- normalize_label = None , unbias_data = None , unbias_label = None , num_point_for_scalar = None , ** kwargs ):
74
+ normalize_label = None , unbias_data = None , unbias_label = None , num_point_for_scaler = None , ** kwargs ):
75
75
"""An :class:`Estimator` for binary classification and regression.
76
76
77
77
Amazon SageMaker Linear Learner provides a solution for both classification and regression problems, allowing
@@ -186,14 +186,14 @@ def __init__(self, role, train_instance_count, train_instance_type, predictor_ty
186
186
self .normalize_data = normalize_data
187
187
self .normalize_label = normalize_label
188
188
self .unbias_data = unbias_data
189
- self .ubias_label = unbias_label
190
- self .num_point_for_scaler = num_point_for_scalar
189
+ self .unbias_label = unbias_label
190
+ self .num_point_for_scaler = num_point_for_scaler
191
191
192
192
def create_model (self ):
193
193
"""Return a :class:`~sagemaker.amazon.kmeans.LinearLearnerModel` referencing the latest
194
194
s3 model data produced by this Estimator."""
195
195
196
- return LinearLearnerModel (self , self .model_data , self .role , self .sagemaker_session )
196
+ return LinearLearnerModel (self .model_data , self .role , self .sagemaker_session )
197
197
198
198
def fit (self , records , mini_batch_size = None , ** kwargs ):
199
199
# mini_batch_size can't be greater than number of records or training job fails
0 commit comments