Skip to content

Commit 7c1f8ee

Browse files
authored
Merge branch 'master' into master
2 parents b7a84fc + df701c3 commit 7c1f8ee

File tree

175 files changed

+14833
-1415
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

175 files changed

+14833
-1415
lines changed

.gitignore

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -30,5 +30,6 @@ env/
3030
.vscode/
3131
**/tmp
3232
.python-version
33-
**/_repack_model.py
34-
**/_repack_script_launcher.sh
33+
**/_repack_script_launcher.sh
34+
tests/data/**/_repack_model.py
35+
tests/data/experiment/sagemaker-dev-1.0.tar.gz

CHANGELOG.md

Lines changed: 114 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,119 @@
11
# Changelog
22

3+
## v2.125.0 (2022-12-19)
4+
5+
### Features
6+
7+
* add RandomSeed to support reproducible HPO
8+
9+
### Bug Fixes and Other Changes
10+
11+
* Correct SageMaker Clarify API docstrings by changing JSONPath to JMESPath
12+
13+
## v2.124.0 (2022-12-16)
14+
15+
### Features
16+
17+
* Doc update for TableFormatEnum
18+
* Add p4de to smddp supported instance types
19+
* Add disable_profiler field in config and propagate changes
20+
* Added doc update for dataset builder
21+
22+
### Bug Fixes and Other Changes
23+
24+
* Use Async Inference Config when available for endpoint update
25+
26+
### Documentation Changes
27+
28+
* smdistributed libraries release notes
29+
30+
## v2.123.0 (2022-12-15)
31+
32+
### Features
33+
34+
* Add support for TF2.9.2 training images
35+
* Add SageMaker Experiment
36+
37+
## v2.122.0 (2022-12-14)
38+
39+
### Features
40+
41+
* Feature Store dataset builder, delete_record, get_record, list_feature_group
42+
* Add OSU region to frameworks for DLC
43+
44+
### Bug Fixes and Other Changes
45+
46+
* the Hyperband support fix for the HPO
47+
* unpin packaging version
48+
* Remove content type image/jpg from analysis configuration schema
49+
50+
## v2.121.2 (2022-12-12)
51+
52+
### Bug Fixes and Other Changes
53+
54+
* Update for Tensorflow Serving 2.11 inference DLCs
55+
* Revert "fix: type hint of PySparkProcessor __init__"
56+
* Skip Bad Transform Test
57+
58+
## v2.121.1 (2022-12-09)
59+
60+
### Bug Fixes and Other Changes
61+
62+
* Pop out ModelPackageName from pipeline definition
63+
* Fix failing jumpstart cache unit tests
64+
65+
## v2.121.0 (2022-12-08)
66+
67+
### Features
68+
69+
* Algorithms Region Expansion OSU/DXB
70+
71+
### Bug Fixes and Other Changes
72+
73+
* FrameworkProcessor S3 uploads
74+
* Add constraints file for apache-airflow
75+
76+
## v2.120.0 (2022-12-07)
77+
78+
### Features
79+
80+
* Add Neo image uri config for Pytorch 1.12
81+
* Adding support for SageMaker Training Compiler in PyTorch estimator starting 1.12
82+
* Update registries with new region account number mappings.
83+
* Add DXB region to frameworks by DLC
84+
85+
### Bug Fixes and Other Changes
86+
87+
* support idempotency for framework and spark processors
88+
89+
## v2.119.0 (2022-12-03)
90+
91+
### Features
92+
93+
* Add Code Owners file
94+
* Added transform with monitoring pipeline step in transformer
95+
* Update TF 2.9 and TF 2.10 inference DLCs
96+
* make estimator accept json file as modelparallel config
97+
* SageMaker Training Compiler does not support p4de instances
98+
* Add support for SparkML v3.3
99+
100+
### Bug Fixes and Other Changes
101+
102+
* Fix bug forcing uploaded tar to be named sourcedir
103+
* Update local_requirements.txt PyYAML version
104+
* refactoring : using with statement
105+
* Allow Py 3.7 for MMS Test Docker env
106+
* fix PySparkProcessor __init__ params type
107+
* type hint of PySparkProcessor __init__
108+
* Return ARM XGB/SKLearn tags if `image_scope` is `inference_graviton`
109+
* Update scipy to 1.7.3 to support M1 development envs
110+
* Fixing type hints for Spark processor that has instance type/count params in reverse order
111+
* Add DeepAR ap-northeast-3 repository.
112+
* Fix AsyncInferenceConfig documentation typo
113+
* fix ml_inf to ml_inf1 in Neo multi-version support
114+
* Fix type annotations
115+
* add neo mvp region accounts
116+
3117
## v2.118.0 (2022-12-01)
4118

5119
### Features

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
2.118.1.dev0
1+
2.125.1.dev0

doc/amazon_sagemaker_model_building_pipeline.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -453,7 +453,7 @@ Example:
453453
str_outputParam, int_outputParam, bool_outputParam, float_outputParam
454454
],
455455
)
456-
output_ref = step_lambda.OutputParameters["output1"]
456+
output_ref = step_lambda.properties.Outputs["output1"]
457457
458458
Where the lambda function with :code:`arn arn:aws:lambda:us-west-2:123456789012:function:sagemaker_test_lambda`
459459
should output like this:
@@ -479,7 +479,7 @@ Note that the output parameters can not be nested. Otherwise, the value will be
479479
}
480480
}
481481
482-
This will be resolved as :code:`{"output1": "{\"nested_output1\":\"my-output\"}"}` by which if you refer :code:`step_lambda.OutputParameters["output1"]["nested_output1"]` later, a non-retryable client error will be thrown.
482+
This will be resolved as :code:`{"output1": "{\"nested_output1\":\"my-output\"}"}` by which if you refer :code:`step_lambda.properties.Outputs["output1"]["nested_output1"]` later, a non-retryable client error will be thrown.
483483

484484
CallbackStep
485485
`````````````
@@ -503,7 +503,7 @@ Example:
503503
inputs={"arg1": "foo", "arg2": 5, "arg3": param},
504504
outputs=[outputParam],
505505
)
506-
output_ref = step_callback.OutputParameters["output1]
506+
output_ref = step_callback.properties.Outputs["output1]
507507
508508
The output parameters cannot be nested. If the values are nested, they will be treated as a single string value. For example, a nested output value of
509509
@@ -515,7 +515,7 @@ The output parameters cannot be nested. If the values are nested, they will be t
515515
}
516516
}
517517
518-
is resolved as :code:`{"output1": "{\"nested_output1\":\"my-output\"}"}`. If you try to refer to :code:`step_callback.OutputParameters["output1"]["nested_output1"]` this will throw a non-retryable client error.
518+
is resolved as :code:`{"output1": "{\"nested_output1\":\"my-output\"}"}`. If you try to refer to :code:`step_callback.properties.Outputs["output1"]["nested_output1"]` this will throw a non-retryable client error.
519519
520520
521521
QualityCheckStep

doc/api/prep_data/feature_store.rst

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -72,3 +72,15 @@ Inputs
7272
.. autoclass:: sagemaker.feature_store.inputs.FeatureValue
7373
:members:
7474
:show-inheritance:
75+
76+
.. autoclass:: sagemaker.feature_store.inputs.TableFormatEnum
77+
:members:
78+
:show-inheritance:
79+
80+
81+
Dataset Builder
82+
***************
83+
84+
.. autoclass:: sagemaker.feature_store.dataset_builder.DatasetBuilder
85+
:members:
86+
:show-inheritance:

doc/api/training/sdp_versions/latest.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,8 +26,8 @@ depending on the version of the library you use.
2626
<https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html#data-parallel-use-python-skd-api>`_
2727
for more information.
2828

29-
Version 1.4.0, 1.4.1, 1.5.0 (Latest)
30-
====================================
29+
Version 1.4.0, 1.4.1, 1.5.0, 1.6.0 (Latest)
30+
===========================================
3131

3232
.. toctree::
3333
:maxdepth: 1

doc/api/training/smd_data_parallel_release_notes/smd_data_parallel_change_log.rst

Lines changed: 43 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,51 @@ Release Notes
77
New features, bug fixes, and improvements are regularly made to the SageMaker
88
distributed data parallel library.
99

10-
SageMaker Distributed Data Parallel 1.5.0 Release Notes
10+
SageMaker Distributed Data Parallel 1.6.0 Release Notes
1111
=======================================================
1212

13+
*Date: Dec. 15. 2022*
14+
15+
**New Features**
16+
17+
* New optimized SMDDP AllGather collective to complement the sharded data parallelism technique
18+
in the SageMaker model parallelism library. For more information, see `Sharded data parallelism with SMDDP Collectives
19+
<https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-sharded-data-parallelism.html#model-parallel-extended-features-pytorch-sharded-data-parallelism-smddp-collectives>`_
20+
in the *Amazon SageMaker Developer Guide*.
21+
* Added support for Amazon EC2 ``ml.p4de.24xlarge`` instances. You can run data parallel training jobs
22+
on ``ml.p4de.24xlarge`` instances with the SageMaker data parallelism library’s AllReduce collective.
23+
24+
**Improvements**
25+
26+
* General performance improvements of the SMDDP AllReduce collective communication operation.
27+
28+
**Migration to AWS Deep Learning Containers**
29+
30+
This version passed benchmark testing and is migrated to the following AWS Deep Learning Containers (DLC):
31+
32+
- SageMaker training container for PyTorch v1.12.1
33+
34+
.. code::
35+
36+
763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:1.12.1-gpu-py38-cu113-ubuntu20.04-sagemaker
37+
38+
39+
Binary file of this version of the library for `custom container
40+
<https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html#data-parallel-bring-your-own-container>`_ users:
41+
42+
.. code::
43+
44+
https://smdataparallel.s3.amazonaws.com/binary/pytorch/1.12.1/cu113/2022-12-05/smdistributed_dataparallel-1.6.0-cp38-cp38-linux_x86_64.whl
45+
46+
47+
----
48+
49+
Release History
50+
===============
51+
52+
SageMaker Distributed Data Parallel 1.5.0 Release Notes
53+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54+
1355
*Date: Jul. 26. 2022*
1456

1557
**Currency Updates**
@@ -38,12 +80,6 @@ Binary file of this version of the library for `custom container
3880
3981
https://smdataparallel.s3.amazonaws.com/binary/pytorch/1.12.0/cu113/2022-07-01/smdistributed_dataparallel-1.5.0-cp38-cp38-linux_x86_64.whl
4082
41-
42-
----
43-
44-
Release History
45-
===============
46-
4783
SageMaker Distributed Data Parallel 1.4.1 Release Notes
4884
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4985

doc/api/training/smd_model_parallel_release_notes/smd_model_parallel_change_log.rst

Lines changed: 53 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -6,9 +6,60 @@ New features, bug fixes, and improvements are regularly made to the SageMaker
66
distributed model parallel library.
77

88

9-
SageMaker Distributed Model Parallel 1.11.0 Release Notes
9+
SageMaker Distributed Model Parallel 1.13.0 Release Notes
1010
=========================================================
1111

12+
*Date: Dec. 15. 2022*
13+
14+
**New Features**
15+
16+
* Sharded data parallelism now supports a new backend for collectives called *SMDDP Collectives*.
17+
For supported scenarios, SMDDP Collectives are on by default for the AllGather operation.
18+
For more information, see
19+
`Sharded data parallelism with SMDDP Collectives
20+
<https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-extended-features-pytorch-sharded-data-parallelism.html#model-parallel-extended-features-pytorch-sharded-data-parallelism-smddp-collectives>`_
21+
in the *Amazon SageMaker Developer Guide*.
22+
* Introduced FlashAttention for DistributedTransformer to improve memory usage and computational
23+
performance of models such as GPT2, GPTNeo, GPTJ, GPTNeoX, BERT, and RoBERTa.
24+
25+
**Bug Fixes**
26+
27+
* Fixed initialization of ``lm_head`` in DistributedTransformer to use a provided range
28+
for initialization, when weights are not tied with the embeddings.
29+
30+
**Improvements**
31+
32+
* When a module has no parameters, we have introduced an optimization to execute
33+
such a module on the same rank as its parent during pipeline parallelism.
34+
35+
**Migration to AWS Deep Learning Containers**
36+
37+
This version passed benchmark testing and is migrated to the following AWS Deep Learning Containers (DLC):
38+
39+
- SageMaker training container for PyTorch v1.12.1
40+
41+
.. code::
42+
43+
763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:1.12.1-gpu-py38-cu113-ubuntu20.04-sagemaker
44+
45+
46+
Binary file of this version of the library for `custom container
47+
<https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-sm-sdk.html#model-parallel-bring-your-own-container>`_ users:
48+
49+
- For PyTorch 1.12.0
50+
51+
.. code::
52+
53+
https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/pytorch-1.12.1/build-artifacts/2022-12-08-21-34/smdistributed_modelparallel-1.13.0-cp38-cp38-linux_x86_64.whl
54+
55+
----
56+
57+
Release History
58+
===============
59+
60+
SageMaker Distributed Model Parallel 1.11.0 Release Notes
61+
---------------------------------------------------------
62+
1263
*Date: August. 17. 2022*
1364

1465
**New Features**
@@ -41,12 +92,7 @@ Binary file of this version of the library for `custom container
4192

4293
.. code::
4394
44-
https://sagemaker-distributed-model-parallel.s3.us-west-2.amazonaws.com/pytorch-1.12.0/build-artifacts/2022-08-12-16-58/smdistributed_modelparallel-1.11.0-cp38-cp38-linux_x86_64.whl
45-
46-
----
47-
48-
Release History
49-
===============
95+
https://sagemaker-distribu
5096
5197
SageMaker Distributed Model Parallel 1.10.1 Release Notes
5298
---------------------------------------------------------

doc/api/training/smp_versions/latest.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,8 +10,8 @@ depending on which version of the library you need to use.
1010
To use the library, reference the
1111
**Common API** documentation alongside the framework specific API documentation.
1212

13-
Version 1.11.0 (Latest)
14-
===========================================
13+
Version 1.11.0, 1.13.0 (Latest)
14+
===============================
1515

1616
To use the library, reference the Common API documentation alongside the framework specific API documentation.
1717

doc/experiments/index.rst

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
############################
2+
Amazon SageMaker Experiments
3+
############################
4+
5+
The SageMaker Python SDK supports to track and organize your machine learning workflow across SageMaker with jobs, such as Processing, Training and Transform, or locally.
6+
7+
.. toctree::
8+
:maxdepth: 2
9+
10+
sagemaker.experiments
Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,20 @@
1+
Experiments
2+
============
3+
4+
Run
5+
-------------
6+
7+
.. autoclass:: sagemaker.experiments.Run
8+
:members:
9+
10+
.. automethod:: sagemaker.experiments.load_run
11+
12+
.. automethod:: sagemaker.experiments.list_runs
13+
14+
.. autoclass:: sagemaker.experiments.SortByType
15+
:members:
16+
:undoc-members:
17+
18+
.. autoclass:: sagemaker.experiments.SortOrderType
19+
:members:
20+
:undoc-members:

doc/index.rst

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -60,6 +60,16 @@ Orchestrate your SageMaker training and inference workflows with Airflow and Kub
6060
workflows/index
6161

6262

63+
****************************
64+
Amazon SageMaker Experiments
65+
****************************
66+
You can use Amazon SageMaker Experiments to track machine learning experiments.
67+
68+
.. toctree::
69+
:maxdepth: 2
70+
71+
experiments/index
72+
6373
*************************
6474
Amazon SageMaker Debugger
6575
*************************

0 commit comments

Comments
 (0)